首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H3 − 2x Nb x M2 − x (PO4)3 (M = In, Fe) acid phosphates have been obtained by ion exchange from their lithium forms and X-ray powder diffraction, impedance measurements, and 7Li and 1H NMR spectroscopy. The parameters of the hexagonal unit cell of the proton-exchanged forms differ only slightly from those of the initial lithium compounds. According to 1H NMR data, the proton in the acid phosphates is not hydrated. The conductivity of the acid phosphates at high temperatures depends weakly on their composition and is ∼1.7 × 10−7 S cm−1 at 620 K. The activation energy of conduction is 30–33 kJ/mol (430–770 K).  相似文献   

2.
Li1 +x Ti2 − x Ga x (PO4)3(x= 0−0.2) NASICON double phosphates are prepared and studied by high-temperature X-ray diffraction, 7Li NMR spectroscopy, impedance spectroscopy, and calorimetry. Doping with Ga3+ cations increases cation mobility in LiTi2(PO4)3. Ion conductivity, NMR spectroscopy, and calorimetry data imply the occurrence of a phase transition in LiTi2(PO4)3 and in products of partial gallium-for-titanium substitution. Original Russian Text ? I.Yu. Pinus, I.V. Arkhangel’skii, N.A. Zhuravlev, A.B. Yaroslavtsev, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 8, pp. 1235–1239.  相似文献   

3.
Li1 − x Ti2 − x Nb x (PO4)3 NASICON materials are prepared and studied by X-ray diffraction, 7Li and 31P NMR spectroscopy, and impedance spectroscopy. Vacancy mobility in Li1 − x Ti2 − x Nb x (PO4)3 is lower than interstitial lithium mobility. Nb5+ cations with low doping levels increase cation mobility in LiTi2(PO4)3. Original Russian Text ? I.Yu. Pinus, I.A. Stenina, A.I. Rebrov, N.A. Zhuravlev, A.B. Yaroslavtsev, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 8, pp. 1240–1244.  相似文献   

4.
Sodium zirconium phosphate (NZP) composition Na1−x Li x Zr2(PO4)3, x = 0.00–0.75 has been synthesized by method of solid state reaction method from Na2CO3·H2O, Li2CO3, ZrO2, and NH4H2PO4, sintering at 1050–1250 °C for 8 h only in other to determine the effect on thermal properties, such as the phase formation of the compound. The materials have been characterized by TGA and DTA thermal analysis methods from room temperature to 1000 °C. It was observed that the increase in lithium content of the samples increased thermal stability of the samples and the DTA peaks shifted towards higher temperatures with increase in lithium content. The thermal stability regions for all the sample was observed to be from 640 °C. The sample with the highest lithium content, x = 0.75, exhibited the greatest thermal stability over the temperature range.  相似文献   

5.
Characteristics of the catalytic activity in the dehydration of butanols of copper-containing sodium-zirconium-phosphates (NZPs), in which Na+ ions substitute for Cu2+ ions are obtained. It was found that in the 100–370°C region, the action energy of the reaction falls upon the transition through temperature T* ∼ 300°C, above which the electrophysical and crystallographic properties of phosphates change. The observed dependences are explained by the center (which consists of copper with various positions in the phosphate network at T < T* and T > T*) taking part in the formation of carbonyl compounds. This indicates the presence of a ligand effect, i.e., to structural sensitivity of the dehydration reaction in the case of Cu-NZP catalysts.  相似文献   

6.
The phase compositions of theLaVO4-SrMoO4(1) and Sr2GeO4-SrMoO4 (2) binary systems, which bound the Sr2GeO4-LaVO4-SrMoO4 (3) ternary system, and the LaSr2(VO4)(GeO4)-Sr2GeO4+SrMoO4 section (4) of system 3 are studied at subsolidus temperatures. Systems 1 and 2 consist of a mixture of the initial compounds, and the La1 − x Sr2 + x (GeO4)(V1 − x Mo x O4) (where 0 ≤ x ≤ 0.4) region of substitutional solid solutions with a palmierite structure is formed in system 3. The unit cell parameters of the solid solutions are determined. The distribution of the lanthanum and strontium cations over two positions of the cationic sublattice is described. Original Russian Text ? V.D. Zhuravlev, V.G. Zubkov, A.P. Tyutyunnik, Yu.A. Velikodnyi, N.D. Koryakin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 1, pp. 135–137.  相似文献   

7.
Ag1 − x Mg1 − x R1 + x (MoO4)3 NASICON-like solid solutions, where R = Al or Sc and 0 ≤ x ≤ 0.5, were prepared; their crystal lattice parameters and thermal stabilities were determined. Silver-ion conductivity was measured, and conductivity activation energy values were calculated for various temperature ranges. Above 400°C, Ag1 − x Mg1 − x R1 + x (MoO4)3 phases have ionic conductivities comparable to the conductivities of sodium-ion and lithium-ion NASICON-like conductors. The conductivity increases as the tervalent cation radius increases or the amount of mobile silver ions increases.  相似文献   

8.
Hybrid materials xLiFePO4·(1 − x)Li3V2(PO4)3 were synthesized by sol–gel method, with phenolic resin as carbon source and chelating agent, methylglycol as surfactant. The crystal structure, morphology and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge–discharge test and particle size analysis. The results show that LiFePO4 and Li3V2(PO4)3 co-exist in hybrid materials, but react in single phase. Compared with individual LiFePO4 and Li3V2(PO4)3 samples, hybrid materials have smaller particle size and more uniform grain distribution. This structure can facilitate Li ions extraction and insertion, which greatly improves the electrochemical properties. The sample 0.7LiFePO4·0.3Li3V2(PO4)3 retains the advantages of LiFePO4 and Li3V2(PO4)3, obtaining an initial discharge capacity of 166 mA h/g at 0.1 C rate and 109 mA h/g at 20 C rate, with a capacity retention rate of 73.3% and an excellent cycle stability.  相似文献   

9.
Synthesis and ionic conductivity of Li3−2x Nb x Fe2−x (PO4)3 complex phosphates were studied by X-ray powder diffraction and impedance spectroscopy. These phosphates are formed only at 900–1000°C. Variations in their thermal expansivity and unit cell parameters induced by aliovalent doping were characterized. The conductivity of these materials increases monotonically in the series Li0.5Nb1.25Fe0.75(PO4)3-LiNbFe(PO4)3 and Li1.2Nb0.9Fe1.1(PO4)3-Li3Fe2(PO4)3, which is explained by consecutive occupation of the Li(1) and Li(2) positions in their structures. Original Russian Text ? A.R. Shaikhlislamova, I.A. Stenina, A.B. Yaroslavtsev, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 12, pp. 1957–1962.  相似文献   

10.
Phases of variable composition K1−x A1−x R1+x (MoO4)3) (0 ≤ x ≤ 0.2–0.6), where A = Ni, Mg, Co, or Mn and R = Yb, Lu, or Sc, which crystallize in a NASICON-type structure (space group R c) were synthesized by solid-phase reactions. Their crystal parameters were calculated, and IR and Raman spectra described. Original Russian Text ? N.M. Kozhevnikova, T.N. Khamaganova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 5, pp. 864–865.  相似文献   

11.
Li1.3Zr1.7Al0.3(PO4)3的离子交换特性   总被引:1,自引:0,他引:1  
锂作为21世纪推动科学技术发展的重要元素之一,被誉为“工业味精”、“能源之星”。目前锂及其相关盐类材料已成为信息产业、核能源、航空航天技术、新型材料及军事科技等行业重点开发领域,具有极高科学价值和广阔商业前景[1 ̄4]。氯化锂是电解制金属锂的主要原料,它的纯度是电  相似文献   

12.
Phases of a variable composition in the Ba3−x Sr x Y(BO3)3, system (0 < x < 3) have been investigated for the first time using the solid-phase reactions method. The formation of two series of solid solutions crystallizing in different structural types have been established using X-ray diffraction (D-8 Advance diffractometer, CuK α radiation, graphite monochromator). Crystal characteristics of obtained phases have been determined. Original Russian Text ? T.N. Khamaganova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 553–556.  相似文献   

13.
Sol–gel auto-combustion method is adopted to prepare solid solutions of nano-crystalline spinel oxides, (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1).The phases are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller surface area. The cubic lattice parameters, calculated by Rietveld refinement of XRD data by taking in to account the cationic distribution and affinity of Zn ions to tetrahedral sites, show almost Vegard’s law behavior. Galvanostatic cycling of the heat-treated electrodes of various compositions are carried in the voltage range 0.005–3 V vs. Li at 50 mAg−1 up to 50 cycles. Phases with high Zn content x ≥ 0.6 showed initial two-phase Li-intercalation in to the structure. Second-cycle discharge capacities above 1,000 mAh g−1 are observed for all x. However, drastic capacity fading occurs in all cases up to 10–15 cycles. The capacity fading between 10 and 50 cycles is found to be greater than 52% for x ≤ 0.4 and for x = 0.8. For x = 0.6 and x = 1, the respective values are 40% and 18% and a capacity of 570 and 835 mAh g−1 is retained after 50 cycles. Cyclic voltammetry and ex situ transmission electron microscopy data elucidate the Li-cycling mechanism involving conversion reaction and Li–Zn alloying–dealloying reactions.  相似文献   

14.
Al synthesized samples are isostructural and crystallize in the orthorhombic symmetry system, space group Ibca. Particles of the final product of ∼200 nm in size have been obtained. The introduction of the vanadate anion into the matrix composition leads to the lowering of the symmetry of the Eu3+ environment and to the rise of the defect luminescence at 450–550 nm because of the unit cell distortion. The luminescence of defects in terbium-europium-containing samples is determined by the sample surface area, which decreases on annealing. The τ, W 0 and γ parameters of the luminescence kinetics of the samples have been determined.  相似文献   

15.
The synthesis conditions for variable-composition phase Na1−x Co1−x Fe1+x (MoO4)3, 0 ≤ x ≤ 0.4, crystallizing in the nasicon structure type (R $ \bar 3 $ \bar 3 c) were examined. For this phase, the crystallographic parameters were calculated, vibrational spectra were interpreted, and temperature dependence of electrical conductivity, dielectric constant, and dielectric loss tangent were examined.  相似文献   

16.
The possibility of preparing two series of solid solutions in the system Ba3 − x Sr x Er(BO3)3 (0 ≤ x ≤ 3.0), crystallizing in different structural types, was examined. Samples of the phases of variable composition were synthesized by the method of solid-phase reactions, and their X-ray phase analysis was done. The X-ray diffraction characteristics of the phases synthesized were determined. Original Russian Text ? T.N. Khamaganova, 2008, published in Zhurnal Prikladnoi Khimii, 2008, Vol. 81, No. 7, pp. 1210–1212.  相似文献   

17.
Complex salts [Ir(NH3)5Cl]x[Rh(NH3)5Cl]1−x MO4 (x = 0.5, 1; M = Mo, W) are synthesized and their thermal properties are studied. The crystal structures are determined for [Ir(NH3)5Cl]WO4 and [Ir(NH3)5Cl]MoO4. In the structures, the ions are linked by N-H...O hydrogen bonds, the shortest ones being 2.868(2)–3.422(2) ?. and 2.860(4)–3.434(3) ?. respectively. The thermal properties of the complex salts are studied in the hydrogen atmosphere and in hydrogen-helium mixtures. It is demonstrated that the final products are the mixtures of nanocrystalline powders of Ir and binary or ternary solid solutions with the hcp lattice.  相似文献   

18.
CeO2-based solid solutions with a fluorite structure are promising materials as electrolytes of medium-temperature electrochemical devices. This work presents the results of systematic studies of structural and electric properties and oxygen nonstoichiometry of the Ce0.8(Sm1 − x Ca x )0.2O2 − δ system in a wide range of concentrations of 0 < x < 1 performed in order to establish the causes affecting the system conductivity and its behavior in a reducing medium. It is found that a single-phase solid solution of the fluorite type is formed in the whole concentration range. Parameters of its lattice cells decrease linearly at an increase in the concentration of Ca2+. Conductivity in air grows when calcium is added due to a decrease in the grain boundary resistance. The maximum conductivity in air was obtained for the composition of Ce0.8(Sm0.8Ca0.2)0.2O2 − δ and is 13.71 × 10−3 S/cm at 873 K. Studies of the dependence of conductivity of the partial pressure of oxygen showed that electron conductivity is observed at a higher oxygen partial pressure at an increase in the temperature and calcium concentration. The critical partial pressure of oxygen ( pO2 * )\left( {p_{O_2 }^* } \right) for the compositions of Ce0.8(Sm1 − x Ca x )0.2O2 − δ with x = 0; 0.2, and 0.5 is 1.83 × 10−16, 1.73 × 10−13, and 3.63 × 10−13 atm at 1173 K, respectively, and 2.76 × 10−21, 5.05 × 10−18, and 1.31 × 10−18 atm at 1023 K.  相似文献   

19.
The rare earth-transition metal-indides RE 4IrIn (RE = Gd–Er) and the solid solutions RE 4 TIn1–x Mg x (RE = Y, Gd; T = Rh, Ir) were prepared by arc-melting of the elements and subsequent annealing. The rare earth sesquioxides were used as oxygen source for the suboxides RE 4IrInO0.25 (RE = Gd, Er). Single crystals of the indides were grown via slowly cooling of the samples and they were investigated via X-ray powder diffraction and single crystal diffractometer data: Gd4RhIn type, F 3m, a = 1372.3(6) pm for Gd4IrIn, a = 1365.3(6) pm for Tb4IrIn, a = 1356.7(4) pm for Dy4IrIn, a = 1353.9(4) pm for Ho4IrIn, a = 1344.1(4) pm for Er4IrIn, a = 1370.3(5) pm for Y4RhIn0.54Mg0.46, a = 1375.6(5) pm for Gd4IrIn0.55Mg0.45, a = 1373.0(3) pm for Gd4IrInO0.25, and a = 1345.1(4) pm for Er4IrInO0.25. The rhodium and iridium atoms have a trigonal prismatic rare earth coordination. Condensation of the RhRE 6 and IrRE 6 prisms leads to three-dimensional networks which leave voids that are filled by regular In4 or mixed In4–x Mg x tetrahedra. The indium (magnesium) atoms have twelve nearest neighbors (3In(Mg) + 9RE) in icosahedral coordination. The rare earth atoms build up a three-dimensional, adamantane-like network of condensed, edge and face-sharing octahedra. For Gd4IrInO0.25 and Er4IrInO0.25 the RE16 octahedra are filled with oxygen. The crystal chemical peculiarities of these rare earth rich compounds are discussed. Correspondence: Rainer P?ttgen, Institut für Anorganische und Analytische Chemie, Westf?lische Wilhelms-Universit?t Münster, Germany.  相似文献   

20.
Pure ceria-zirconia mixed oxides Ce x Zr1−x O2 with high specific surface area were synthesized with a new epoxyde driven sol–gel route and characterized by thermal analysis, X-ray diffraction studies and transmission electron microscopy. This sol–gel method is cheap and uses only a few steps. The Ce x Zr1−x O2 mixed oxides were obtained in the range of 0 ≤ x ≤ 1 (except for x = 0.8) and crystallised at 350 °C after decomposition of the gels. This temperature is very low in comparison with the other methods. The studies of the influence of different synthesis parameters (concentration of the sol and decomposition temperature) allowed us to determine the conditions to obtain the best homogeneity in the gel to avoid the formation of a mixture of phases instead of mixed oxides. This approach leads to the synthesis of oxide with specific surface area above 100 m2 g−1. The elaboration of an ambigel could increase this value up to 195 m2 g−1 for x = 0.5. This sol–gel synthesis offers new perspectives for these oxides in several applications. Generally, these oxides are difficult to obtain pure in large range of composition at low-temperature and with high specific surface area by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号