首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA Comet Assay method was carried out to detect irradiation treatment of some foods like meat, spices, beans and lentils. The fresh meat of cow and duck were irradiated up to radiation doses of 3 kGy, the spices (cardamoms and cumin black) were irradiated to radiation doses of 5, 10, 15 and 20 kGy while the beans (black beans and white beans) and lentils (red and green lentils) were irradiated to 0.5 and 1 kGy. All the foods were then analyzed for radiation treatment using simple microgel electrophoresis of single cells or nuclei (DNA Comet Assay). Sedimentation, lysis and staining times were adjusted to get optimized conditions for correct and easy analysis of each food. Using these optimized conditions, it was found out that radiation damaged DNA showed comets in case of irradiated food samples, whereas in non-treated food samples, round or conical spots of stained DNA were visible. Shape, length and intensity of these comets were also radiation dose dependent. Screening of unirradiated and irradiated samples by Comet Assay was successful in the case of all the foods under consideration under the optimized conditions of assay. Therefore, for different kinds of irradiated foods studied in the present study, the DNA Comet Assay can be used as a rapid, simple and inexpensive screening test.  相似文献   

2.
Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0 kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory.  相似文献   

3.
In order to fulfil the European task for market survey in food irradiation the first Romanian laboratory for detection of irradiated foodstuffs was established at IRASM Irradiation Centre. In this preliminary study, a wide range of Romanian food samples (spices, vegetables and meat) gamma irradiated at IRASM have been studied using different detection methods: (1) DNA comet assay, (2) thermoluminescence (TL) and (3) electron spin resonance (ESR) for foodstuffs containing bone or cellulose. The results suggest that there is no general available detection method and there is no perfect detection method. In conclusion, in order to carry out a correct identification of radiation treatment of a food sample it is recommended to use at least two standardised detection methods.  相似文献   

4.
A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5 kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60 min in 2.5% SDS and electrophoresis was carried out at a voltage of 2 V/cm for 2–2.5 min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.  相似文献   

5.
Employing the simple microgel electrophoresis of single cells - ‘comet assay’ - on grapefruit seeds enabled a rapid identification of irradiated fruits. Fruits were exposed to radiation doses of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 kGy covering the range of potential commercial irradiation for insect disinfestation and quarantine purposes. Seeds were isolated, crushed, and the cells embedded in an agarose layer. After lysis of the cells, they were subjected to microgel electrophoresis for 2.5 minutes, and then stained. Fruits irradiated with 0.2 kGy and higher doses showed typical DNA fragmentation, the DNA fragments stretching or migrating out of the cells forming a tail towards the anode, giving the damaged cells an appearance of a comet. With increasing dose a longer extension of the DNA from the nucleus towards the anode is observed. Undamaged cells will appear as intact nuclei without tails. The DNA comet assay is thus a rapid and inexpensive screening technique to detect irradiated grapefruits. Suspected samples may subsequently be analysed by officially validated methods for detection of irradiated foods.  相似文献   

6.
DNA comet assay can be employed as a rapid and inexpensive screening test to check whether frozen ground beef patties (hamburgers) have been irradiated as a means to increase their safety by eliminating pathogenic bacteria, e.g. E. coli O157:H7. Such a detection procedure will provide an additional check on compliance with existing regulations, e.g. enforcement of labelling and rules in international trade. Frozen ready prepared hamburgers from the market place were ‘electron irradiated’ with doses of 0, 1.3, 2.7, 4.5 and 7.2 kGy covering the range of potential commercial irradiation. DNA fragmentation in the hamburgers was made visible within a few hours using the comet assay, and non-irradiated hamburgers could be easily discerned from the irradiated ones. Even after 9 months of frozen storage, irradiated hamburgers could be identified. Since DNA fragmentation may also occur with other food processes (e.g. temperature abuse), positive screening tests shall be confirmed using a validated method to specifically prove an irradiation treatment, e.g. EN 1784 or EN 1785.  相似文献   

7.
Ionizing radiation is widely used as treatment technique for food preservation. It involves among others reduction of microbial contamination, disinfestations, sprout inhibition and extension of shelf life of food. However, the commercialization of irradiated food requires the availability of reliable methods to identify irradiated foodstuffs. In this paper, we present results on the application to irradiated chicken of this method, based on the detection, in muscle and skin samples, of the peaks of ions 98 Da and 112 Da, in a ratio approximately 4:1, typical of radiation induced 2-dodecylcyclobutanones (2-DCB). Aim of the work was also to study the time stability of the measured parameters in samples irradiated at 3 and 5 kGy, and to verify the efficacy of the treatment from a microbiological point of view. Our results show that, one month after irradiation at 3 kGy, the method is suitable using the skin but not the muscle, while the measured parameters are detectable in both samples irradiated at 5 kGy. The microbial population was substantially reduced even at 3 kGy.  相似文献   

8.
In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8 kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0 kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.  相似文献   

9.
The inclusion of a purification step by silver ion chromatography in the EN 1785 analytical protocol for 2-alkylcyclobutanones (validated by the European Committee for Standardization for the detection of ionizing radiation treatment) has considerably improved the quality of the chromatograms obtained, allowing the detection of food samples irradiated at very low doses (0.1 kGy) or irradiated ingredients included in low proportions in non irradiated foodstuffs. This analytical modification of the protocol EN 1785 ought thus to permit a very considerable extension of its current field of application.  相似文献   

10.
Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.  相似文献   

11.
The use of ionizing radiation in food processing has received increased interest as a means of reducing the level of foodborne pathogens. This overview discusses the regulatory issues connected with the use of this technology in the United States. Several recent changes in the FDA's review process are discussed. These include the current policy that utilizes an expedited review process for petitions seeking approval of additives and technologies intended to reduce pathogen levels in food, and the recent USDA rule that eliminates the need for a separate rulemaking process by USDA for irradiation of meat and poultry. Recently promulgated rules and pending petitions before the FDA associated with the use of ionizing radiation for the treatment of foods are also discussed along with the current FDA labeling requirements for irradiated foods and the 1999 advanced notice of proposed rule on labeling. Another issue that is presented is the current status of the approval of packaging materials intended for food contact during irradiation treatment of foods.  相似文献   

12.
Application of gamma irradiation for inhibition of food allergy   总被引:5,自引:0,他引:5  
This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.  相似文献   

13.
UV-irradiated DNA is less susceptible to restriction by Type II endonucleases than unirradiated DNA presumably due to photolesions formed in the recognition sites. Previous reported studies have used 254 nm radiation or 313 nm plus acetophenone, both treatments which introduce pyrimidine dimers in preference to other photolesions. To assess the effect of a longer wavelength, at which the ratio of pyrimidine dimer formation to the formation of other photolesions is reduced, two different DNAs were irradiated with UV of either 254 or 313 nm and restricted with suitable restriction endonucleases. Restriction patterns were analysed for novel fragments resulting from UV-induced alteration of enzyme recognition sites. EcoRI restriction of 254 nm irradiated lambda DNA produced six novel bands, only three of which were observed following restriction of 313 nm irradiated lambda. These three represented the largest fragments resulting from single site blocks. Novel fragments involving adjacent site blocks observed at 254 nm were not found with 313 nm radiation. Comparison of 254 nm irradiated pSV2gpt to that irradiated at 313 nm, both restricted with Dral, revealed a more complex pattern. Although all sites were singly blocked by radiation of both wavelengths, multiple site blocks produced by 313 nm radiation did not occur in the order predicted by the 254 nm radiation dose response. These data suggest that certain sites in pSV2gpt may be more refractory to multiple site blocks than others when irradiated at 313 nm.  相似文献   

14.
For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.  相似文献   

15.
The study was conducted to compare the radiation types of a gamma ray and an electron beam for the inhibition and reduction of a food allergy. OVA (2 mg/ml) were irradiated at 3, 5, 7 and 10 kGy. Patterns detected by the SDS-PAGE and an immunoblot showed that the intact OVA band disappeared and that it was dependant upon the radiation doses regardless of the radiation types. Binding abilities of the irradiated OVA against the monoclonal IgG and the egg allergic patients’ IgE decreased due to a conformational change of the epitope, but differences from using the two different radiation types were not observed. The results indicate that both the radiation types can be used for an inhibition and a reduction of a food allergy regardless of the radiation types.  相似文献   

16.
Many countries allow the treatment of foods with low doses of ionizing radiation to reduce microbial and insect infestations, inhibit maturation, and extend shelf life. Therefore, a reliable method is needed to identify irradiated foods and to determine their compliance with respect to allowable absorbed radiation dose. Several approaches for the identification of irradiated foods have been developed such as measurement of radiolytic products, chemiluminescence, and thermoluminescence, and the use of electron spin resonance spectroscopy to measure free radicals trapped in bone. A method for the determination of radiolytically produced hydrocarbons was developed in our laboratory to evaluate the utility of monitoring these compounds as indicators of food irradiation. The method involves the extraction of the radiolytic hydrocarbons from foods and their quantitation by gas chromatography. Concentrations of the radiolytically produced hydrocarbons increased linearly with radiation doses ranging from 0 to 6 kGy. The limit of detection appears to be approximately 1 kGy. The method was found to be useful for the identification of gamma-irradiated foods such as shrimp, frog legs, pork, beef, and poultry. Results of the method evaluation studies of these food matrices as well as factors affecting hydrocarbon production and determination will be presented.  相似文献   

17.
Abstract The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC) immobilized on protamine sulfate coated microliter wells. Fifty percent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody (1:500 dilution), whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the dose of UV radiation to DNA, as well as, to the concentration of antigen immobilized on the plate. Specific binding to DNA irradiated with 5.0 J/m2 was detected with as little as 10 ng of DNA. The sensitivity was further extended to less than 1 J/m2 by using higher concentrations (100 ng) of UVssDNA. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establish that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated control cells.  相似文献   

18.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

19.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

20.
Abstract The preparations of chicken erythrocyte linear double-stranded DNA and superhelical plasmid pBR322 DNA were irradiated by continuous low-intensity UV radiation (I = 25-50 W/m2, λ= 254 nm) as well as by highintensity picosecond laser UV radiation (I = 1011-1013 W/m2, λ= 266 nm). The effect of DNA secondary structure alterations on the formation of liquid-crystalline dispersions from UV-irradiated DNA preparations was studied. It was shown that in the case of linear DNA, watching the disappearance of abnormal optical activity characteristic for cholesteric liquid crystal we managed to detect the presence of photochemical alterations in DNA irradiated by low-intensity UV radiation at an absorbed energy of more than 20 quanta per nucleotide. In the case of superhelical DNA using enzyme treatment of liquid-crystalline dispersions and monitoring the appearance of abnormal optical activity, we detected the presence of photochemical alterations in DNA molecules after low-intensity UV irradiation at an absorbed energy of less than 4 quanta per nucleotide. Under the latter approach using picosecond UV laser irradiation at three different light intensities we were able to distinguish the different mechanisms of fine alterations in DNA secondary structure at an absorbed energy value of about 3 quanta per nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号