首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Fe_2O_3空心球的水热法制备及其对苯酚的吸附性能   总被引:1,自引:0,他引:1  
以铁氰化钾、磷酸二氢铵等为反应物,采用水热法合成了α-Fe2O3空心球,并用XRD,TEM,FESEM(场发射扫描电镜)、UV-Vis和低温氮吸附脱附对其进行了表征。结果表明,α-Fe2O3空心球直径在200~560nm之间,其BET比表面积为80m2·g-1,平均孔径为8.5nm。考察了反应时间、反应物用量和反应温度等对α-Fe2O3空心球形貌和大小的影响,提出了其可能的形成机理。研究了室温下α-Fe2O3空心球吸附苯酚的性能,吸附达平衡时,其吸附苯酚的量达97mg·g-1。  相似文献   

2.
以胶质碳球为模板、六亚甲基四胺为沉淀剂,在乙醇中溶剂热反应,再经500℃煅烧6 h制备了NiO空心球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和低温氮吸附-脱附,对NiO的结构和形貌进行了表征。结果表明溶剂热反应时间是制备完整NiO空心球的关键因素,溶剂热反应12 h,再经空气中煅烧,可制得形貌均一的NiO空心球。所得产物是由NiO纳米粒子组装而成的具有多孔结构的空心球。同时,本文对NiO空心球结构的形成过程和可能机理进行了分析和讨论。  相似文献   

3.
An effective method for loading Pt nanoparticles on monodispersed hollow carbon nanospheres by one-step pyrolysis of polystyrene spheres (PS) adsorbed with platinum (IV) ions was developed. The polystyrene spheres were firstly enwrapped with a layer of sucrose and cetyltrimethyl ammonium bromide (CTAB) micelles. Adsorption of platinum (IV) ions onto the polystyrene spheres was carried out via electrostatic interaction between the negatively charged platinum salt and the positively charged amino group in the CTAB. Pyrolysis of the PS-Pt (IV) precursors at 600 °C under nitrogen atmosphere resulted in the simultaneous decomposition of the sucrose to carbon and the adsorbed platinum complex to metallic Pt. During this process the polystyrene spheres was removed and hollow sphere of PtC formed. Nanocomposites of hollow carbon nanospheres with different platinum loading were synthesized and their electrocatalytic activity was evaluated using methanol as a model molecule. Results showed that the as-prepared hollow carbon nanospheres supported platinum catalysts have high electrocatalytic activity and long-term stability towards the oxidation of methanol. The present method is promising for the fabrication of carbon supported platinum catalysts for the direct methanol fuel cell.  相似文献   

4.
This paper presents a facile hydrothermal route to synthesize monodispersive and single-crystalline BaHfO(3) hollow micro- and nanospheres in a concentrated basic environment. The hollow spheres were size tunable from submicrometer to nanoscale by simply adjusting the base concentration at a suitable temperature. The base concentration played the key role on forming BaHfO(3) hollow spheres. Detailed investigations on base concentration, reaction temperature, and duration indicated that the formation of BaHfO(3) hollow spheres was driven by Ostwald ripening process. Because of the abundance of defects, the as-prepared BaHfO(3) hollow nanospheres exhibited a blue light emission under UV-light excitation at room temperature. Calcination led to the photoluminescence declination due to the decrease of defects.  相似文献   

5.
Novel urchin-like core/shell composite hollow spheres were fabricated by assembly of nickel nanocones on the surface of hollow glass spheres; the effects of some reaction parameters on the morphology of the shell layers and the room temperature magnetic properties of the products were investigated.  相似文献   

6.
ZnO hollow spheres with diameters ranging from 400 to 600 nm and the thickness of shell approximate 80 nm were synthesized by a simple polyoxometalate-assisted solvothermal route without using any templates. The effect of polyoxometalate concentration, reaction time and temperature on the formation of the hollow spheres was investigated. The results indicated that the hollow spheres were composed of porous shells with nanoparticles and polyoxometalate play a key role in controlling morphology of ZnO. A possible growth mechanism based on polyoxometalate-assisted assembly and slow Ostwald ripening dissolution in ethanol solution is tentatively proposed. In addition, the room temperature photoluminescence spectrum showed that the ZnO hollow spheres exhibit exciting emission features with wide band covering nearly all the visible region.  相似文献   

7.
利用半导体光催化分解水产氢是将太阳能转换为化学能最有前景的方法之一.在众多的半导体光催化剂中,硫化镉(CdS)不仅具有可见光响应的带隙值(约2.4 eV),而且其导带底和价带顶的能级横跨于水的氧化还原电势两端,能够在可见光照射下分解水产氢,这使得CdS成为一种热门的光催化剂而被广泛研究.然而,单一CdS由于光生电子?空...  相似文献   

8.
本文以约120nm的α-Se球为模板,抗坏血酸为还原剂,H2PtCl6为前驱体,通过改变氯铂酸的用量可控合成了不同壳厚的纳米铂空球(Pthollow)及其修饰玻碳(GC)电极(Pthollow/GC);采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、能量色散X射线(EDX)谱、X射线衍射(X-ray diffraction,XRD)谱和选区电子衍射(SAED)图等表征其形貌、组成与结构;以甲酸为探针分子,采用循环伏安和计时电流法研究了甲酸在Pthollow/GC电极上的电催化氧化行为.结果表明,所制备的Pthollow分散性好、粒径比较均匀,其多孔球壳是由多维多级的铂原子团簇所构建,呈现多晶铂的结构与性质;当RPt/Se=1.2时,所合成Pthollow。对甲酸的电催化氧化活性最高,且明显优于电沉积铂(Ptnano)修饰GC电极(Ptnano/GC),为直接甲酸燃料电池(DFAFC)阳极材料的优化制备提供了一定的实验与理论依据,有潜在的应用推广价值.  相似文献   

9.
新型氧化铝空心球的制备及表征   总被引:7,自引:1,他引:7  
以胶体碳球为模板, 廉价的硝酸铝为铝源, 成功制备出了新型的大小可控的氧化铝空心球. 通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量扩散X射线(EDX)、X射线粉末衍射(XRD)等手段对合成产品进行了表征, 并考察了不同合成条件对空心球形貌的影响. 实验结果表明, 合成的氧化铝空心球大小均一, 粒径及壁厚均可调节. 在该实验条件下, 硝酸铝浓度及吸附时间的改变对产品结果没有明显的影响, 而吸附温度的改变引起了产品表面光滑度及壁厚的改变.  相似文献   

10.
Carbon capsules with hollow cores and mesoporous shells (HCMS) containing entrapped Au particles were prepared by template replication from solid core/mesoporous shell silica spheres with encapsulated Au particles. The resulting HCMS carbon capsules were then nanocast one step further to generate Au-trapping hollow core silica capsules with nanostructured shells.  相似文献   

11.
A simple route based on time-dependent growth was employed to synthesize solid and hollow spheres of Pd/Fe(3)O(4) nanocomposite. Transmission electron microscopic (TEM) imaging shows that the spheres are composed of nanocrystals with the solid spheres having a diameter of 533 nm whereas the hollow ones having a diameter of 520 nm and a shell thickness of 100 nm. An assembly-then-growth mechanism for the formation of the magnetic Pd/Fe(3)O(4) nanocomposite has also been elucidated on the basis of the experimental observations. It is demonstrated that the Pd/Fe(3)O(4) nanocomposite functions as a heterogeneous catalyst for the hydrogenation reaction of p-nitrophenol at room temperature under atmospheric pressure. Both the solid and hollow spheres possess unique magnetic properties so that they may be conveniently separated and recovered by a magnet after the catalytic reaction.  相似文献   

12.
The present paper describes an easy and quick synthesis of hollow core mesoporous shell carbon (HCMSC) simply templated from unpretreated solid core mesoporous shell silica using a cheap precursor like sucrose. Physical characterizations showed uniform spherical carbon capsules with a hollow macroporous core of ca. 305- and 55-nm-thick mesoporous shell, forming a well-developed 3-D interconnected bimodal porosity. High specific surface area and large pore volume were also confirmed, suggesting the obtained HCMSC as a promising catalyst support. HCMSC-supported Pt (nominal 20 wt.%) with an average Pt particle size of 1.9 nm was synthesized by wet impregnation, and a signal of strong interaction between carbon support and platinum was confirmed by X-ray photoelectron spectroscopy. In cyclic voltammetry and linear sweep voltammetry tests, the Pt/HCMSC electrode showed significantly higher electrocatalytic activity for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) if compared with commercial Pt/Vulcan catalyst. The durability tests by cyclic voltammetry showed for the Pt/HCMSC a lower electrochemical active surface area loss than the commercial one in acidic solution. All the primary tests suggested that the Pt/HCMSC, due to its particular structure and the high dispersion of noble metal particles, is a promising catalyst for fuel cell applications, for MOR and ORR.  相似文献   

13.
Hollow carbonaceous composites (HCCs) possessing sphere and hemisphere shape, which had wide size distribution between several tens of nanometers and several micrometers, were prepared through a facile hydrothermal method using glucose as carbon source with the assistance of sodium dodecyl sulfate (SDS). Pyrolysis of these hollow carbonaceous composites at 900 °C under nitrogen flow produced carbonized hollow carbon spheres (HCSs) without changing their structures. Platinum (Pt) was directly deposited on the surface of the HCSs by incipient wet method, using the NaBH4 as the reductant. TEM, SEM, powder XRD and FT-IR were utilized to characterize all these samples. It was found that Pt nanoparticles were uniformly anchored on the outer and the inner surface of HCSs. The electrocatalytic properties of the Pt/HCS electrode for methanol oxidation have been investigated through cyclic voltammetry and chronoamperometry. The Pt/HCS electrode showed significantly higher electrocatalytic activity and more stability for methanol oxidation compared with Pt supported carbon microspheres (Pt/CMs) and commercial carbon (Pt/XC-72) electrode. The excellent performance for the Pt/HCS might be attributed to the high dispersion of platinum catalysts and the particular hollow structure of HCSs.  相似文献   

14.
Silica@carbon core-shell spheres have been synthesized via a hydrothermal carbonization procedure with glucose as the carbon precursor and silica spheres as the cores. Such SiO(2)@C core-shell spheres can be further used as templates to produce SiO(2)@C@SiO(2), and SiO(2)@SiO(2) spheres with a vacant region in two SiO(2) shells, noble-metal nanoparticle loaded SiO(2)@C core-shell spheres, and hollow carbon capsules through different follow-up processes. The obtained core-shell materials possess remarkable chemical reactivity in reducing noble-metal ions to nanoparticles, e.g., platinum. These unique core-shell spherical composites could find applications in catalyst supports, adsorbents, encapsulation, nanoreactors, and reaction templates.  相似文献   

15.
In this study,we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior,which can act as active colloidal catalysts.The method includes the following steps:first,hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator,and 2,4-dihydroxybenzoic acid and hexamethylene tetramine(HMT) as the polymer precursors under hydrothermal conditions;Fe 3+ or Ag + cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups;finally,the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process,meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously.The structures of the obtained functional hollow carbon spheres were characterized by TEM,XRD,and TG.As an example,Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.  相似文献   

16.
CuS hollow spheres have been successfully synthesized through a facile microemulsion-template-interfacial-reaction route using copper naphthenate as metal precursor and thioacetamide as the source of S(2-). In this way, hollow spheres could be obtained directly since the reaction of two reactants respectively dissolved in two different phases of an oil-in-water (o/w) microemulsion only occurs at the oil/water interface. Therefore, it is a key for forming hollow spheres to optimize the interfacial reaction rate by controlling reaction conditions. Furthermore, the size of the hollow spheres can be tailored by changing the content of oil phase. In this study, the average diameter of the CuS hollow spheres can be adjusted from 110 to 280 nm by changing the content of oil phase from 0.5 ml to 1.5 ml. In addition, the reaction temperature is a very important factor for forming CuS hollow spheres and the appropriate reaction temperature is about 50 °C.  相似文献   

17.
This article presents a facile surfactant‐assisted route to the fabrication of ZnS hollow spheres with diameter of about 0.5~1 µm in ethanol at room temperature. The surfactant quaternary ammonium salt of 2‐undecyl‐1‐dithioureido‐ethyl‐imidazoline (SUDEI) prepared in our lab acts as surface‐modifying agent, morphology‐controlling agent and stabilizing agent in the whole procedure. TEM, SEM, XRD, EDXA, UV‐vis, and FTIR were used to characterize the ZnS products. The influences of reaction conditions were discussed while a formation mechanism was proposed to explain this peculiar morphology. The ZnS hollow spheres product is of excellent dispersion capacity and stability in liquid paraffin (LP) and the tribological properties of LP containing ZnS hollow spheres were studied with an Optimol SRV (SRV is the abridged name for German Schwingung, Reibung, Verschleiss) oscillating friction and wear tester, showing excellent anti‐wear and friction‐reducing performances. The action mechanism of the ZnS hollow spheres in LP was also investigated and discussed.  相似文献   

18.
煤自燃初期的反应机理研究   总被引:10,自引:1,他引:10  
从实验得到的可能引起煤自燃的8个活性基团入手,提出了一系列简单煤分子模型,利用密度泛函DFT/6-31G对其完成了几何优化,计算了包括反应焓变、吉布斯自由能和活化能等,从热力学和动力学角度分析了计算结果。基于理论计算获得了煤活性基团的活泼性次序,得出了煤自燃初期的反应机理主要是氧分子先进攻煤分子中的活性基团,产生活泼性很高的中间体,然后中间体进一步反应得到水或二氧化碳及其他反应产物,计算结果与实验基本符合。  相似文献   

19.
Carbon capsules with hollow core and mesoporous shell (HCMS) structures were used as a support material for Pt(50)-Ru(50) catalyst, and the catalytic performance of the HCMS supported catalyst in the direct methanol fuel cell was described; the HCMS carbon supported catalysts exhibited much higher specific activity for methanol oxidation than the commonly used E-TEK catalyst by about 80%, proving that the HCMS carbon capsules are an excellent support for electrode catalysts in DMFC.  相似文献   

20.
We report herewith the synthesis of hollow Pt nanospheres by using bis(p-sulfonatophenyl)phenylphosphine to selectively remove the Ag cores of Ag-Pt core-shell nanoparticles. Core-shell Ag-Pt nanoparticles were first obtained by the successive reduction method with a discontinuous Pt shell to allow the BSPP passage. Transmission electron microscopy imaging of the core-shell Ag-Pt nanoparticles before and after BSPP dissolution showed little changes in the particle size, indicating that the removal of the Ag cores had occurred isomorphously. The hollow Pt nanospheres, together with the predecessor Ag-Pt core-shell particles of the same size, were transferred from water to toluene and surface modified by dodecylamine in toluene. This allows the catalytic activities of solid and hollow Pt particles in room temperature methanol oxidation reaction to be compared under conditions of identical particle size and the same surface environment. The measured higher specific activity of the Pt hollow nanospheres could then be attributed unambiguously to the larger specific surface area prevalent in the porous hollow structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号