首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have developed a geometric-based scaling model that describes the adsorption of diblock copolymer chains from good solvents and theta-solvents onto reactive surfaces of varying curvatures. To evaluate the impact of particle size on the adsorption process, we probed the adsorption of poly(styrene-b-methymethacrylate) (PS-PMMA) diblock copolymers from solvents with different degrees of selectivity on aluminum oxide (Al(2)O(3)) surfaces belonging to particles of different sizes. When the adsorbed PMMA layer is dense enough (in the case of a theta-solvent for the PMMA block), our results show good correlation between the theory and experimental results, pointing to the formation of a PMMA adsorption layer and a brushlike PS layer. Conversely, when adsorption occurs from a nonpreferential solvent, particularly on particles with high curvature, the PMMA adsorption layer at the surface becomes less dense and the grafted PS moiety exhibits a transitional morphology consisting of several layers of increasingly sparsely spaced blobs.  相似文献   

2.
Polarized infrared spectroscopy in attenuated total reflection was used to investigate the adsorption of PMMA (polymethylmethacrylate) onto PS (polystyrene) that was previously adsorbed onto oxidized silicon from dilute solution in carbon tetrachloride at 30°C. The carbonyl group of PMMA forms hydrogen bonds with surface silanol groups, giving segment-surface interaction energy of 4 kT as against 1 kT for PS (k is the Boltzmann constant, T the absolute temperature). The formation of hydrogen-bonding by PMMA was unaffected, in rate or amount, by preadsorbed PS, but a lesser total amount of PMMA adsorbed onto PS, resulting in a higher average bound fraction. The histogram of the mass adsorbed, attributable to subpopulations of chains with different bound fractions, was inferred by subtracting infrared spectra acquired at successive times. Whereas this histogram was broad and bimodal for adsorption onto bare surface, it was narrower and unimodal for adsorption onto preadsorbed PS. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

4.
Fourier transform infrared spectroscopy (FTIR) was used as a novel characterization method to determine the properties of the interface that developed when cobalt oxide nanoparticles were self-assembled in a poly(methyl methacrylate) (PMMA) matrix. The method employed the distinct changes that were observed in the infrared spectra of the polymer upon adsorption onto the cobalt oxide nanoparticles, allowing a quantitative determination of the average number of contact points that the average polymer chain formed with the surface of a cobalt oxide nanoparticle of average size. The results obtained with this method compared favorably to those obtained by the coupling of transmission electron microscopy (TEM) experiments with thermogravimetric analysis (TGA). On the basis of both methods, we concluded that the interfacial region created between the cobalt oxide nanoparticles and PMMA is extremely sensitive to the chain length, i.e., the number of anchor points and the density of the polymer layer increase with chain molecular weight. At molecular weights of approximately 250,000, the density of the polymer layer saturates at a value that correspond to that of very thin PMMA films.  相似文献   

5.
In this work, we report the preparation of graphene nanoplatelet which covalently functionalized with PMMA chains by introduction of vinyl groups onto graphene surface through simple esterification reaction between hydroxyl groups of graphite oxide and methacrylic anhydride. The synthesis is followed by in-situ polymerization with MMA monomers. The structural properties were characterized with X-ray diffraction spectroscopy (XRD) and scanning electronic microscopy (SEM) that showed the crystalline graphite is converted to individual layers during the synthesis steps. The grafting of PMMA chains was monitored with IR spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The TGA results revealed 40% wt of PMMA chains chemically grafted onto graphene surface. Significant increase in glass transition temperature (Tg) and existence of polymer chains in two positions (physically absorbed and chemically grafting onto graphite surface) are indicated by differential scanning calorimetric (DSC) analysis.  相似文献   

6.
We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.  相似文献   

7.
Cyanoacrylates are an extremely reactive class of adhesives. Despite their commercial use as instant adhesives, the adhesion mechanism, especially to technically relevant oxidized metal surfaces, has not yet been sufficiently investigated. In the present work, ultra-thin ethyl cyanoacrylate films are deposited on copper oxide and aluminum oxide by spin coating and cured there. Various surface sensitive spectroscopy methods are used to identify possible interactions. X-Ray photoelectron spectroscopy (XPS) indicates, among other information, hydrogen bonding of the carbonyl group to the oxidized surfaces. Metastable induced electron spectroscopy (MIES) measurements support the theory of this preferential molecular orientation. In addition, XPS shows the presence of an ionic carboxylate (COO) species at the interface. Infrared reflection adsorption spectroscopy (IRRAS) measurements confirm this ionic interaction and furthermore allow to investigate the influence of water on the reaction. A possible interaction mechanism of cyanoacrylates with metal oxides could be proposed. The formation of a carboxylate species probably occurs by hydrolysis of the ethyl group via the intermediate of a carboxyl (COOH) species.  相似文献   

8.
The chemical bonding of three different anhydride and carboxylic acid based compounds with a set of differently prepared aluminum substrates has been investigated using infrared reflection absorption spectroscopy. The compounds were selected to model typically used adhesives, coatings, and self-assembling monolayers. The purpose of the investigation was to study the interaction of these functional groups with the aluminum oxide surface and to determine whether this interaction is influenced by the changes in chemistry and composition of the oxide layer. The extent to which the compounds resisted disbondment in water was also investigated. The oxide layers on the differently prepared substrates were all found to be capable of hydrolysis of the anhydride group, resulting in the formation of two carboxylic acid groups. Subsequently, both of the carboxylic acid groups became deprotonated, to form a coordinatively bonded carboxylate species. The same behavior was also observed for monofunctional carboxylic acids. For all different oxides layers, the carboxylate was found to be coordinated in a bridging bidentate way to two aluminum cations in the oxide layer. The oxide layers showed however clear differences in the amount of molecules being chemisorbed. A relation was established with the amount of hydroxyls present on their surfaces, as determined from X-ray photoelectron spectroscopy measurements. The coordinative bonding of a monofunctional carboxylic acid group to the oxide surface was found to be not stable in the presence of water, while a bifunctional carboxylic acid group could resist displacement by water for a prolonged period of time.  相似文献   

9.
We study the effect of nonsolvent on the formation of polymer nanomaterials in the nanopores of porous templates. Water (nonsolvent) is added into a poly (methyl methacrylate) (PMMA) solution in dimethylformamide (DMF) confined in the nanopores of an anodic aluminum oxide (AAO) template. Water forms a wetting layer on the pore wall and causes the PMMA solution to be isolated in the center of the nanopore, resulting in the formation of PMMA nanospheres or nanorods after the solvent is evaporated. The formation of the polymer nanomaterials induced by nonsolvent is found to be driven by the Rayleigh‐instability‐type transformation. Without adding the nonsolvent, PMMA chains precipitate on the walls of the nanopores after the solvent is evaporated, and PMMA nanotubes are obtained.  相似文献   

10.
"An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanffi magnitude increase as the content of CCNTs increases up to 0.3%."  相似文献   

11.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

12.
We covalently immobilized poly(ethylene oxide) (PEO) chains onto a fluorinated ethylene propylene copolymer (FEP) surface. On the FEP surface, aldehyde groups were first deposited by plasma polymerization of acetaldehyde or acrolein. Then, amino‐PEO chains were immobilized through Schiff base formation, which was followed by reduction stabilization with sodium cyanoborohydride. The PEO‐grafted polymer surfaces thus prepared were characterized by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy, contact‐angle measurements, and protein adsorption. The dramatic increase in the C O intensity of the high‐resolution XPS C 1s spectrum, together with an overall increase in oxygen content, indicated the successful attachment of PEO chains onto the acetaldehyde plasma surfaces. The amount of grafted PEO chains depended on the superfacial density of the plasma‐generated aldehyde groups. The grafted monoamino‐PEO chains formed a brushlike structure on the polymer surface, whereas the bisamino‐PEO chains predominately adopted a looplike conformation. The PEO surface had a regular morphology with greater roughness than the aldehyde surface underneath. Surface hydrophilicity increased with the grafting of PEO. Also, the bisamino‐PEO‐grafted surface had slightly higher surface hydrophilicity than its monoamino‐PEO counterpart. These PEO coatings reduced fibrinogen adsorption by 43% compared with the substrate FEP surface. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2323–2332, 2000  相似文献   

13.
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the structures formed during the adsorption of sodium polyacrylate (NaPA) on charged TiO2 particles and to determine the subsequent interaction of the adsorbed polymer structure with cationic and anionic surfactants. The nature of the polymer structure was deduced from the adsorbed amount in tandem with the information obtained from monitoring the change in the relative intensity of the COO- and COOH infrared bands. In particular, it is found that the relative number of COO- and COOH groups on the polymer backbone for the adsorbed state differs from that of the same polymer in solution. This difference is due to a shift in the population of COO-/COOH groups on the polymer backbone that arises when the COO- groups bind to positively charged sites on the surface. A change in the number COO-/COOH groups on the polymer is thus related to a change in the bound fraction of polymer. It is shown that the initial NaPA approaching the bare surface adopts a flat conformation with high bound fraction. Once the bare sites on the surface are covered, the accommodation of additional polymer on the surface requires the existing adsorbed layer to adopt a conformation with a lower bound fraction. When the adsorbed NaPA is probed with a solution containing the anionic surfactant sodium dodecyl sulfate (SDS), the SDS competes for surface sites and displaces some of the bound NaPA segments from the surface, giving rise to an polymer layer adsorbed with an even lower bound fraction. In contrast, addition of a solution containing the cationic surfactant cetyltrimethylammonium bromide (CTAB) results in the binding of the surfactant directly to the free COO- sites on the adsorbed polymer backbone. Confirmation of a direct interaction of the CTAB headgroup with the free COO- groups of the polymer is provided by intensity changes in the headgroup IR bands of the CTAB.  相似文献   

14.
Adsorption of polyvinylalcohol onto Fuller''s earth surfaces   总被引:1,自引:0,他引:1  
The adsorption of polyvinyl alcohol (PVA) onto Fuller's earth surfaces has been studied at fixed pH (4.8) and ionic strength of the medium. The adsorption isotherm obtained resembles with LIII type of isotherm, which indicates that multilayer formation of polymer chains begins after a certain time period when the monolayer formation is complete. The study of concentration effect and kinetics of adsorption process enabled in evaluating various adsorption and kinetic parameters such as the adsorption coefficient, modified Freundlich adsorption isotherm constants, distribution coefficient and rate constants for adsorption and desorption. A plausible mechanism of adsorption process was suggested according to which the adsorption was predominantly due to the formation of hydrogen bonds between the OH groups of PVA and aluminols, silanols and carboxylate ions of the organic matter of the Fuller's earth. The proposed mechanism was further confirmed by the IR spectral analysis of native and PVA-adsorbed clay. The adsorption was appreciably affected by the pH, presence of salts, organic solvents, solid to liquid ratio and temperature of the adsorption medium. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibb's free energy, enthalpy and entropy. The results obtained in the study helped in formulating a mechanism of interaction between PVA and Fuller's earth surfaces.  相似文献   

15.
We develop a new process for the preparation of synergistic antifouling functional coatings on gold surfaces via a “grafting to” approach. The strategy includes a synthetic step of polymer brushes that consist of poly (ethylene glycol) (PEG) and zwitterionic side chains via a typical reversible-addition fragmentation chain transfer (RAFT) polymerization process, and a subsequent deposition of the polymer brushes onto a gold substrate. The presence of PEG and zwitterion chains on these polymer brush-coated gold surfaces has been proved to have a synergistic effect on the final antifouling property of the coating. PEG chains lower the electrostatic repulsion between zwitterionic polymer chains and increase their graft density on gold surfaces, while zwitterionic polymer effectively improves the antifouling property that is offered by PEG chains alone. Protein adsorption and cell attachment assays tests are conducted to confirm that this copolymer layer on gold surface has a pronounced resistance against proteins such as Bovine serum albumin and Lysozyme. Importantly, the antifouling property can be systematically adjusted by varying the molar ratio of PEG to zwitterionic chains in the final coating copolymer.  相似文献   

16.
The interactions of L-alanine with gamma- and alpha-alumina have been investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). L-alanine/alumina samples were dried from aqueous suspensions, at 36.5 degrees C, with two amino acid concentrations (0.4 and 0.8 mmol g-1) and at different pH values (1, 6, and 13). The vibrational spectra proved that the nature of L-alanine interactions with both aluminas is the same (hydrogen bonding), although the groups involved depend on the L-alanine form and on alumina surface groups, both controlled by the pH. For samples prepared at pH 1, cationic L-alanine [CH3CH(NH3+)COOH] displaces physisorbed water from alumina, and strong hydrogen bonds are established between the carbonyl groups of alanine, as electron donors, and the surface Al-OH2+ groups of alumina. This occurs at the expense of alanine dimer dissociation and breaking of intramolecular bonds. When samples are prepared at pH 6, the interacting groups are Al-OH2+ and the carboxylate groups of zwitterionic L-alanine [CH3CH(NH3+)COO-]. The affinity of L-alanine toward alumina decreases, as the strong NH3+...-OOC intermolecular hydrogen bonds prevail over the interactions with alumina. Thus, for a load of 0.8 mmol g-1, phase segregation is observed. On alpha-alumina, crystal deposition is even observed for a load of 0.4 mmol g-1. At pH 13, the carboxylate groups of anionic L-alanine [CH3CH(NH2)COO-] are not affected by alumina. Instead, hydrogen bond interactions occur between NH2 and the Al-OH surface groups of the substrate. Complementary N2 adsorption-desorption isotherms showed that adsorption of L-alanine occurs onto the alumina pore network for samples prepared at pH 1 and 13, whereas at pH 6 the amino acid/alumina interactions are not strong enough to promote adsorption. The mesoporous structure and the high specific surface area of gamma-alumina make it a more efficient substrate for adsorption of L-alanine. For each alumina, however, it is the nature of the specific interactions and not the porosity of the substrate that determines the adsorption process.  相似文献   

17.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

18.
Notwithstanding the great practical importance, still open are the questions how, why, and to what extent the size, morphology, and surface charge of metal (hydr)oxide nanoparticles (NPs) affect the adsorption form, adsorption strength, surface density, and packing order of organic (bio)molecules containing carboxylic groups. In this article, we conclusively answer these questions for a model system of ferric (hydr)oxide NPs and demonstrate applicability of the established relationships to manipulating their hydrophobicity and dispersibility. Employing in situ Fourier transform infrared (FTIR) spectroscopy and adsorption isotherm measurements, we study the interaction of 150, 38, and 9 nm hematite (α-Fe(2)O(3)) and ~4 nm 2-line ferrihydrite with sodium laurate (dodecanoate) in water. We discover that, independent of morphology, an increase in size of the ferric (hydr)oxide NPs significantly improves their adsorption capacity and affinity toward fatty acids. This effect favors the formation of bilayers, which in turn promotes dispersibility of the larger NPs in water. At the same time, the local order in self-assembled monolayer (SAM) strongly depends on the morphological compatibility of the NP facets with the geometry-driven well-packed arrangements of the hydrocarbon chains as well as on the ratio of the chemisorbed to the physically adsorbed carboxylate groups. Surprisingly, the geometrical constraints can be removed, and adsorption capacity can be increased by negatively polarizing the NPs due to promotion of the outer-sphere complexes of the fatty acid. We interpret these findings and discuss their implications for the nanotechnological applications of surface-functionalized metal (hydr)oxide NPs.  相似文献   

19.
The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.  相似文献   

20.
Molecular orientation of ethylene–vinyl acetate (EVA) copolymer nanofilms adsorbed on chemically controlled surfaces is studied. Four EVA copolymers with different contents of vinyl acetate (VA) were spin‐coated onto gold, COOH and NH2 functionalized substrates in order to study chain behaviour when adsorbed in a quasi‐two‐dimensional system. Polarization‐modulation infrared reflection–absorption spectroscopy (PM‐IRRAS), a very suitable technique to study thin films, was the key to quantitative calculation of EVA chain orientational angles. Acid–base interactions between carbonyl groups of the chain ramification (vinyl acetate units) and the surface functionalities are evidenced on the basis of infrared spectra. Their incidence on the molecular orientation is also discussed. Our results show a quasi‐parallel orientation of EVA main chains with respect to the surface plane for all adsorption substrates. At the same time, orientation changes of the acetate groups are observed when the EVA copolymer is adsorbed onto functionalized substrates, suggesting that acid–base interactions could influence the orientation of these groups. However, these changes are limited and cannot reorient the main chain axis. Moreover, our results show that increasing VA content in the chain does not lead to more carbonyl functions involved in acid–base interactions with the adsorption surface. This fact also will be discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号