共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis 下载免费PDF全文
Hadi Tabani Mojtaba Mahyari Ali Sahragard Ali Reza Fakhari Ahmad Shaabani 《Electrophoresis》2015,36(2):305-311
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD. 相似文献
2.
Nowadays, macrocyclic antibiotics are presenting an increasing number of enantioseparation applications. The macrocyclic antibiotics used as chiral selectors in capillary electrophoresis (CE) include the ansamycins and the glycopeptides. The macrolides, another important class of macrocyclic antibiotics, have been reported as a new type of chiral selectors recently. In this study, clarithromycin lactobionate (CL), belonging to the group of macrolide antibiotics, was first investigated for its potential as a novel chiral selector in CE for enantiomeric separation of several basic drugs. As observed, CL allowed excellent separation of the enantiomers of metoprolol, atenolol, propranolol, bisoprolol, esmolol, ritodrine, and amlodipine, as well as partial enantioresolution of labetalol and nefopam. In addition, CL possesses advantages such as high solubility and low viscosity in the solvent and very weak UV absorption. In the course of this study, it was found that both migration times and enantioseparation of the basic drugs were influenced by several experimental parameters, e.g. selector concentration, the composition and pH of the BGE, the type and concentration of organic modifier, and applied voltage. Thus, the effects of these factors were systematically investigated, and satisfactory enantioseparations of the studied drugs were achieved at the buffer pH range of 7.3–7.5 using 12.5 mM borax buffer with 50% v/v methanol, 60 mM CL, and 20 kV applied voltage. Moreover, comparison of the influences of the studied parameters was further investigated by means of Statistical Product and Service Solutions (SPSS) in this article. 相似文献
3.
Vinylpyrrolidine-beta-cyclodextrin copolymer: a novel chiral selector for capillary electrophoresis.
The synthesis and characterization of a novel polymer consisting of an alkyl backbone and pendant beta-cyclodextrin units, obtained by radical copolymerization of vinylpyrrolidone and methacryloyl-beta-cyclodextrin (PVP-beta-CD), was reported. The ability of this copolymer to act as a capillary electrophoresis (CE) chiral selector was investigated in the separation of a mixture of basic drugs. The influence of polymeric cyclodextrin concentration, temperature, and pH on the separation of the test analytes was assessed and the advantage of using the polymeric selector over native beta-cyclodextrin was demonstrated. 相似文献
4.
A wide number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties toward plenteous racemic drugs. Different from macrocyclic antibiotics, the use of lincomycin antibiotics as chiral selectors has not been reported previously. In this study clindamycin phosphate belonging to the group of lincomycin antibiotics is first used as a novel chiral selector for the enantiomeric separations of several racemic basic drugs, which possess high separability, consisting of nefopam, citalopram, tryptophan, chlorphenamine and propranolol. Other basic drugs giving partial enantioseparation include tryptophan methyl ester, metoprolol and atenolol. Clindamycin phosphate possesses advantages such as high solubility and low viscosity in the water and very weak UV absorption. In the course of this work we observed that both migration time and enantioseparation were influenced by several parameters such as pH of the BGE, clindamycin concentration, capillary temperature, applied voltage and organic modifier. The optimum pH that was in the neutral or weak basic region but varied among drugs, a low capillary temperature and a clindamycin concentration of 60 or 80 mM are recommended as the optimum conditions for chiral separation of these drugs. Moreover, comparison of the influences of the studied parameters was further investigated by means of Statistical Product and Service Solutions in this paper. 相似文献
5.
Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants and polymers have been involved in dual selector systems for enantioseparation of a series of chiral compounds by capillary electrophoresis (CE). In comparison to the chiral reagents above-mentioned, there is no report concerning the use of polysaccharides in dual chiral CE system. In this paper we first investigate the enantioselectivity of polysaccharide-based dual selector systems towards some chiral drugs. During our recent work, glycogen belonging to the class of branched polysaccharides has been used as a novel chiral selector in CE. In this study, three glycogen-based dual chiral CE systems have been established for enantiomeric separations of several racemic basic drugs consisting of duloxetine, cetirizine, citalopram, sulconazole, laudanosine, amlodipine, propranolol, atenolol and nefopam. These three dual systems combined glycogen (neutral polysaccharide) with chondroitin sulfate A (CSA, ionic polysaccharide), β-CD and HP-β-CD, respectively. It was found that the dual system of glycogen/CSA exhibited good enantioselective properties toward the tested drugs. More importantly, compared to the single selector systems, synergistic effect was observed when glycogen was used with CSA for most of the analytes. This indicated the enhancement of enantioseparation observed for these analytes in glycogen/CSA system might be due to some favorable interaction effects between glycogen and CSA. Moreover, in order to evaluate the stereoselectivity of glycogen/CSA, the influences of buffer pH and selector concentration on enantioseparation of the studied drugs were also investigated. 相似文献
6.
Aleksandra F. Prokhorova Elena N. Shapovalova Aleksei V. Shpak Sergei M. Staroverov Oleg A. Shpigun 《Journal of chromatography. A》2009,1216(17):3674-3677
The evaluation of a macrocyclic glycopeptide antibiotic, eremomycin, as a chiral selector in capillary electrophoresis (CE) has been performed. The stability of eremomycin in solution and capillary electrolyte, as well as its optical and electrophoretic properties have been discussed. The effect of experimental parameters influencing the enantioseparation of several profens has been studied. Excellent enantioseparation of profens has been achieved and migration order has been validated. Comparison of enantioseparations of profens in CE by using eremomycin-mediated electrolytes and in HPLC with eremomycin immobilized on silica has revealed similar trends for both methods. 相似文献
7.
A novel chiral selector, clindamycin succinate, was synthesized and first used as a chiral selector in capillary electrophoresis (CE). The chiral resolution ability of this kind of clindamycin derivation was studied by CE using some racemic drugs as model analytes. From the experimental results, it was found that both resolution and selectivity of the selector were dependent on the following parameters: concentration of chiral selectors, pH of the running buffer, temperature of the capillary column, applied voltage and organic modifier used. The results show that the chiral selector possesses high resolution toward some racemic drugs, including ofloxacin, chlorphenamine, tryptophan, propranolol, sotalol and metoprolol. Excellent chiral resolution of these tested drugs was achieved under the optimal conditions of 50 mM clindamycin succinate, 10% MeOH v/v, 50 mM Tris buffer, pH 4.0, at 22 kV and 20 °C within 25 min. 相似文献
8.
A reliable method is presented for the chiral separation of three basic drugs (mexiletine, chlorpheniramine and propranolol) with serum albumins (human and porcine, HSA and PSA) as chiral selectors by capillary electrophoresis in combination with the partial filling technique. Based on the systematic optimization of operation variables, the chiral separation of mexiletine, chlorpheniramine and propranolol was achieved in the pH 7.4 phosphate buffer by using HSA, PSA and PSA as selectors, respectively. The chiral recognition ability of HSA and PSA was compared. HSA and PSA show a different chiral recognition ability for each of the three drugs. In addition, the association constants between enantiomeric drugs and proteins were determined to be 2.00 and 3.80 x 10(2) M(-1) for mexiletine and HSA, 0.59 and 1.12 x 10(3) M(-1) for chlorpheniramine and PSA, and 0.87 and 1.42 x 10(3) M(-1) for propranolol and PSA. The method for the chiral separation and determination of association constants possesses the advantages of simple performance, effective avoiding of the interference of the UV detection from protein, and lowering of the reagent consumption. 相似文献
9.
This study presents the advantages of the 20 microm inner diameter (id) capillary for the enantioseparation of ten basic drugs with native beta-CD as the chiral selector. The apparent binding constants of each enantiomeric pair were determined to calculate the optimum beta-CD concentration ([beta-CD]opt) and the optimization was subsequently carried out. Comparison of the 20 microm id with 50 microm id were made in terms of the results obtained in the optimization and detection limits. Applying the optimum conditions for each compound, reproducible results (RSD from 0-3; n>5) were obtained for the 20 microm id capillary. Although the sensitivity is lower in the 20 microm id capillary, the LOD determined using this capillary is still found to be acceptable for the ten basic drugs studied. Enhanced resolution and faster analysis times were the main advantages observed with the use of this capillary in enantioseparation. 相似文献
10.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated. 相似文献
11.
A novel cationic cyclodextrin, mono-6A-(2-hydroxyethyl-1-ammonium)-6A-β-cyclodextrin chloride (HEtAMCD) has been successfully synthesized and applied as chiral selector in capillary electrophoresis. The NMR study revealed this chiral selector has three recognition sites: β-CD, ammonium cation and hydroxy group in the sidearm to contribute three corresponding driving forces including inclusion complexation, electrostatic interaction and hydrogen bonding. The effect of buffer pH and HEtAMCD concentration (2.5–10 mM) on enantioselectivity, chiral resolution as well as effective mobility of analytes was investigated. This elegantly designed CD exhibits outstanding enantioselectivities toward the studied hydroxyl acids and ampholytic racemates in CE with the aid of extra hydrogen bonding. Under optimum pH 6.0, chiral resolutions over 5 can be readily obtained for hydroxy acids with CD concentration below 5 mM. The comparison study between HEtAMCD and our earlier reported ammonium CDs indicates the hydroxyethylammonium group of HEtAMCD significantly increased the enantioselective capability. 相似文献
12.
The glycopeptide antibiotic balhimycin and its haloanalogue bromobalhimycin were evaluated as chiral selectors for enantioresolution by capillary electrophoresis. In order (i) to eliminate the adsorption of the glycopeptide antibiotics on the capillary wall, (ii) to shorten the separation time and (iii) to improve the detection sensitivity, a combined approach of the dynamic surface coating technique, the co-electroosmotic flow electrophoresis technique and the partial filling technique was employed for the enantioresolution of 16 acidic racemates. The effect of experimental parameters (plug length of the partial filling solution containing the chiral selector, selector concentration and buffer pH) on enantiorecognition was investigated. Furthermore, the enantiorecognition ability imparted by balhimycin, bromobalhimycin and vancomycin were compared. For most tested compounds, the highest enantiorecognition was obtained with balhimycin as chiral selector. Only in the case of the enantioresolution of tiaprofenic acid, vancomycin showed a superior enantiorecognition. 相似文献
13.
In the capillary electrophoretic separation of primary amine enantiomers using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, the presence of run buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+ competing with analytes for 18C6H4, diminishes the effectiveness of 18C6H4. In order to determine appropriate buffer systems for 18C6H4, various run buffer cationic components including Tris, 1,3-bis[tris(hydroxymethyl)methylamino]propane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, triethanolamine, tetramethylammonium, and Na+ were compared. Quantitative studies of the effects of the competitive constituents were carried out by measuring the electrophoretic mobilities of histidine as a function of the 18C6H4 concentration. We also derived a simple equation to estimate the optimal chiral selector concentration for a maximum mobility difference in the presence of a competitive inhibitor. 相似文献
14.
The separation of racemic derivatized amino acids (N-acetyl) into their enantiomers was achieved using capillary zone electrophoresis employing vancomycin as a chiral selector. Due to the strong absorption properties of the chiral selector at the low wavelengths used, the partial-filling countercurrent method was adopted in order to improve method sensitivity. In the separation system studied, the chiral selector filled only a part of the capillary and, due to the appropriate selection of the pH, was moving in the opposite direction of the analytes keeping the detector free from absorbing compounds. The effect of several experimental parameters on the enantioresolution of analytes was studied, e.g., vancomycin concentration (0-5 mM), pH of the background electrolyte (pH 4-7), capillary temperature (15-35 degrees C), and the presence of an organic modifier in the run buffer (methanol or ethanol or n-propanol). N-Acetyl glutamic acid, serine, cystine, tyrosine, and proline were all baseline-resolved into their enantiomers and the enantioresolution factor (R(s)) was increased by raising the vancomycin concentration. pH 4 allowed the baseline resolution of the five studied analytes in the presence of 2.5 mM of chiral selector and an increase in pH caused a decrease of R(s). 相似文献
15.
The chiral resolving ability of a novel single-isomer cationic β-cyclodextrin (CD), mono-6A-propylammonium-6A-deoxy-β-cyclodextrin chloride (PrAMCD), as a chiral selector in capillary electrophoresis (CE) is reported in this work for the enantioseparation of hydroxy, carboxylic acids and amphoteric analytes. The effect of chiral selector concentration on the resolution was studied. Good resolutions were achieved for hydroxy acids. Optimum resolutions were obtained even at 3.5 mM CD concentration for carboxylic acids. The electrophoretic method showed good linearity and reproducibility in terms of migration times and peak areas, which should make it suitable for routine analysis. In addition, baseline chiral separation of a six-acid mixture was achieved within 20 min. PrAMCD proved to be an effective chiral selector for acidic analytes. 相似文献
16.
Four chiral basic analytes, namely methadone, fluoxetine, venlafaxine, and tramadol, were selected as model compounds for investigating their stereoselective separation with highly sulfated gamma-cyclodextrin (HS gamma-CD) by capillary electrophoresis (CE)-UV and CE-mass spectrometry (MS). At high concentration of chiral selector, the preferentially bonded enantiomer migrated faster in the anodic mode to the detector and high resolutions were obtained for all analytes. In the cathodic mode, at lower highly sulphated cyclodextrin (HS-CD) concentration, basic compounds could be detected, with the weakly bonded enantiomer migrating first (enantiomeric migration order inversion). It was also then possible, at intermediate HS-CD concentration, that only one enantiomer migrated to the detector as cation while the other enantiomer complexed with the CD was negatively charged and presented an opposite mobility. The latter never reached the detector achieving a perfect enantiomeric selectivity. Infinite chiral resolutions were thus achieved by CE-UV as well as by CE-electrospray ionisation (ESI)-MS where concentrations of HS-CD were adapted according to the negative contribution of the nebulization gas pressure of the interface. 相似文献
17.
Separations of basic drug enantiomers have been investigated using glucuronyl glucosyl beta-cyclodextrin (GUG beta-CD) as a chiral selector in the background electrolyte by capillary zone electrophoresis. The effects of GUG beta-CD concentration and running buffer pH on the migration times and resolution of 16 basic drug enantiomers were precisely examined using a linear polyacrylamide-coated capillary. High resolution of 16 basic drug enantiomers was generally attained with a running buffer pH 2.5 or 3.5 containing 10 mM GUG beta-CD. Next, we compared the chiral resolution abilities of GUG beta-CD with those of beta-CD and maltosyl beta-CD (G2 beta-CD). GUG beta-CD showed higher resolution for basic drug enantiomers tested than beta-CD and G2 beta-CD. This could be due to that hydrogen bonding or ionic interactions of uncharged and charged glucuronyl glucosyl groups of GUG beta-CD with an analyte could stabilize the inclusion complex. 相似文献
18.
Summary Separation of the enantiomers of a variety of basic drugs by affinity capillary electrophoresis has been investigated using
α1-acid glycoprotein (α1-AGP) as chiral selector. In order to use a high concentration of α1-AGP without causing low detection sensitivity, the partial filling technique was employed. Enantiomer separations were performed
under conditions (a running buffer at pH 5.0 or 6.0) causing the protein to migrate toward the injection end. Twenty nine
basic racemates were successfully separated by optimizing the protein concentration, buffer pH and organic modifier. α1-AGP obtained from three different suppliers was used to investigate differences among the proteins from different sources.
Although most of the racemates were similarly separated with any of the three types of α1-AGP, some racemates, e.g. acebutolol behaved differently with the three types. The reasons for the different enantioselectivities
of the three types of α1-AGP has not yet been clarified. The method was used to test the optical purity of commercial sulpiride enantiomers and it
was found that the method was suitable and applicable for the purpose. 相似文献
19.
A chiral selector, di-n-amyl L-tartrate-boric acid complex, was in situ synthesized by the reaction of di-n-amyl L-tartrate with boric acid in a nonaqueous background electrolyte (BGE) using methanol as the medium. And a new method of chiral nonaqueous capillary electrophoresis (NACE) was developed with the complex as the chiral selector. It has been demonstrated that the chiral selector is suitable for the enantioseparation of some β-blockers and β-agonists in NACE. Some chiral analytes that could not be resolved in aqueous microemulsion electrokinetic chromatography (MEEKC) with the same chiral selector obtained baseline resolutions in the NACE system. The enantioseparation mechanism was considered to be ion-pair principle and the nonaqueous system was more favorable for the ion-pair formation which is quite useful for the chiral recognition. The addition of a proper concentration of triethylamine into the BGE to control the apparent pH (pH*) enhanced the enantiomeric discrimination. In order to achieve a good enantioseparation, the effects of di-n-amyl L-tartrate and boric acid concentration, triethylamine concentration, applied voltage, as well as capillary length were investigated. Under the optimum conditions, all of the tested chiral analytes including six β-blockers and five β-agonists were baseline resolved. 相似文献
20.
Study on clarithromycin lactobionate based dual selector systems for the enantioseparation of basic drugs in capillary electrophoresis 下载免费PDF全文
Tao Yu Yingxiang Du Jiaquan Chen Guangfu Xu Ke Yang Qi Zhang Jinjing Zhang Shuaijing Du Zijie Feng Yanjie Zhang 《Journal of separation science》2015,38(16):2900-2906
In this paper, the use of clarithromycin lactobionate, a kind of antibiotic chiral selector, in combination with four neutral cyclodextrin derivatives (glucose‐β‐cyclodextrin, hydroxyethyl‐β‐cyclodextrin, methyl‐β‐cyclodextrin and hydroxypropyl‐β‐cyclodextrin) was reported for the first time. As a result, these dual systems gave much better resolution of nefopam (the Rs increased to 3.58, 2.72, 1.49 and 1.42, respectively) compared to the single systems. The effects of buffer pH and selector concentration on the separation of nefopam were also investigated. Additionally, some other basic drugs including metoprolol, atenolol, propranolol, bisoprolol, esmolol and ritodrine were tested for the investigation and evaluation of the enantiorecognition capability of the four dual systems. As expected, the synergistic effect was observed in four systems. Different results of these dual systems were also summarized. 相似文献