首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   

2.
Summary. The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   

3.
The formation of binary and ternary complexes of the divalent transition metal ions CuII, NiII, ZnII, and CoII with some triazoles [1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole, and 3-amino-1,2,4-triazole], and the biologically important aliphatic dicarboxylic acids adipic, succinic, malic, malonic, maleic, tartaric, and oxalic acid, was investigated in aqueous solutions using the potentiometric technique at 25 °C and I = 0.10 mol·dm?3 NaNO3. The formation of 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes was inferred from the corresponding titration curves. The formation of ternary complexes occurs in a stepwise manner with the carboxylic acids acting as primary ligands. The ionization constants (pK a) of the investigated ligands were redetermined and used for determining the stability constants of the binary and ternary complexes formed in solution. The order of stability of the ternary complexes was investigated in terms of the nature of the triazole, carboxylic acid and metal ion used. The ?log10 K values, percent relative stabilization, and log10 X for the ternary complexes have been evaluated and discussed. The concentration distributions of the various species formed in solution were evaluated. The ionization constants of TRZ and malic acid and stability constants of their binary and ternary complexes with CuII, NiII, and CoII metal ions were studied at four different temperatures (15, 25, 35, and 45 °C) and the corresponding thermodynamic parameters have been evaluated and discussed. The complexation behavior of ternary complexes was ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV–visible spectrophotometry.  相似文献   

4.
The formation equilibria of copper(II) complexes and the ternary complexes Cu(HMI)L (HMI=4-Hydroxymethyl-imidazole, L=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(HMI)L and Cu(HMI,H−1)(L) complexes. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameters Δlog 10 K and log 10 X. The effect of the side chains of amino acid ligands (ΔR) on complex formation was discussed. The concentration distributions of various species formed in solution were also evaluated as a function of pH. The thermodynamic parameters ΔH° and ΔS° calculated from the temperature dependence of the equilibrium constants are investigated. The effects of dioxane as a solvent, on the protonation constant of HMI and the formation constants of CuII–HMI complexes, were discussed.  相似文献   

5.
Potentiometric pH titrations (I = 0.15 M NaNO3; 37°C) have been employed to study the various complex equlibria in the systems involving pyridoxamine and histidine with Co(II), Ni(II), Cu(II), and Zn(II). The stoichiometry and formation constants of different species have been determined with the aid of MINIQUAD-75. The complexes obtained were mostly protonated and positively charged. The formation of the ternary species is discussed in terms of the binary species. They were also correlated with the quaternary species involving pyridoxamine, glycine, and imidazole. Spectral analysis of the complex solutions of different compositions are also reported. The relevance of these ternary complex equilibria to some biological functions is discussed.  相似文献   

6.
Summary. Formation of binary and ternary complexes of CuII, CoII, NiII, ZnII, FeIII, AlIII, and CrIII metal ions with some selected aliphatic and aromatic hydroxamic acids and some biologically important amino acids or nucleic acid components was investigated using the potentiometric technique at 25°C and I=0.10moldm–3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of the ligands were determined and used for determining the stability constants of the complexes formed in aqueous medium under the experimental conditions. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The order of stability of the ternary complexes in terms of the nature of hydroxamic acid, amino acid, nucleic acid component and metal ions was investigated and discussed as well as the values of log K and log X for the ternary systems. The concentration distribution of the various complex species in solution was evaluated. In addition, evaluation of the effect of temperature of the medium on the stability of the ternary system MIII – benzohydroxamic acid – L-histidine or adenine (MIII=FeIII, AlIII, and CrIII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   

7.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

8.
The kinetics and thermodynamics of O2 addition to CoII complexes containing the simple triamine ligand (L) diethylenetriamine (=N‐(2‐aminoethyl)ethane‐1,2‐diamine; dien) or N,N″‐dimethyldiethylenetriamine (=N‐methyl‐N′‐[2‐(methylamino)ethyl]ethane‐1,2‐diamine; dmdien) in the aprotic solvent dimethyl sulfoxide (DMSO) were studied by UV/VIS spectrophotometry, potentiometry, and O2 absorption measurements. A parallel investigation on the anaerobic formation of CoII complexes with dmdien, as well as on their reactivity towards O2, was carried out in aqueous 0.1M NaClO4 solution. [CoL]2+ and [CoL2]2+ were the common species formed under anaerobic conditions in both aqueous and DMSO solutions. Under aerobic conditions, O2 adducts of different stoichiometry were formed: a superoxo complex [CoL2O2]2+ in DMSO and dimeric species in H2O. The role of the reaction medium as well as effects of N‐alkylation of the triamine ligand in the formation and reactivity of the [CoII(triamine)] complexes are discussed.  相似文献   

9.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

10.
Summary Ternary 1:1:1 complexes of YIII, CoII, NiII, CuII, LaIII, CeIII and UO 2 2+ with N-(2-acetamido)iminodiacetic acid (H2ADA) as primary ligand and salicylic, anthranilic or phthalic acid as secondary ligand are described. The complexes of CoII and CuII were isolated and characterized by microanalysis, molar conductance measurements, thermal analysis, i.r. and u.v.-vis. spectra. The formation constants of the 111 ternary complexes were determined potentiometrically in 20% (w/w) EtOH-H2O at 24 °C. The stabilities of the 111 M n+ :ADA2–:aromatic acid ternary complexes are higher than those of the corresponding 11 M n+ :aromatic acid binary complexes.  相似文献   

11.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

12.
pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2−) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH), (ida)Cu(OH)Cu(ida), Cu(B)2+, Cu(H-1B)+, Cu(ida)(H−1B), (ida)Cu(B)Cu(ida) and (ida)Cu(H−1B)Cu(ida). Formation constants of the complexes at 25 ±1° at a fixed ionic strength,I = 0.1 mol dm−3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants(ΔlogK cu) of ternary Cu(ida)(H−1B) complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned tofac(f)-mer(m) equilibria of the ida2− ligand coordinated to CuII, as the N-heterocyclic donors, (H−1B), coordinatetrans- to the N-(ida2−) atom in the binary Cu(ida) f complex to form the ternary Cu(ida) m (H−1B) complexes  相似文献   

13.
Several new complexes of a tridentate ONS Schiff base derived from the condensation of S-benzyldithiocarbazate with salicylaldehyde have been characterised by elemental analyses, molar conductivity measurements and by i.r. and electronic spectra. The Schiff base (HONSH) behaves as a dinegatively charged ligand coordinating through the thiolo sulphur, the azomethine nitrogen and the hydroxyl oxygen. It forms mono-ligand complexes: [M(ONS)X], [M=NiII, CuII, CrIII, SbIII, ZnII, ZrIV or UVI with X = H2O, Cl]. The ligand produced a bis-chelated complex of composition [Th(ONS)2] with ThIV. Square-planar structures are proposed for the NiII and CuII complexes. Antimicrobial tests indicate that the Schiff base and five of the metal complexes of CuII, NiII, UVI, ZnII and SbIII are strongly active against bacteria. NiII and SbIII complexes were the most effective against Pseudomonas aeruginosa (gram negative), while the CuII complex proved to be best against Bacillus cereus (gram positive bacteria). Antifungal activities were also noted with the Schiff base and the UVI complex. These compounds showed positive results against Candida albicans fungi, however, none of them were effective against Aspergillus ochraceous fungi. The Schiff base and its zinc and antimony complexes are strongly active against leukemic cells (CD50 = 2.3–4.3 μg cm−3) while the copper, uranium and thorium complexes are moderately active (CD50 = 6.9–9.5 μg cm−3). The nickel, zirconium and chromium complexes were found to be inactive. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The interaction of trace metal ions, viz. MnII, CoII, NiII, CuII, ZnII and CdII with adenine (A) as primary ligand and 5-halouracils, viz. 5-bromouracil (5BrU) and 5-iodouracil (5IU) as secondary ligands (L) has been studied at 25±0.1°C and at constant ionic strength (=0.1M NaNO3), in an aqueous medium using Bjerrum–Calvin's pH-titration technique as adopted by Irving and Rossotti for binary (ML), and by Chidambaram and Bhattacharya for ternary (MAL) systems respectively. The experimental pH-titration data were analyzed with the aid of the BEST computer program in order to evaluate formation constants of various intermediate complex species formed in binary and ternary systems involving nucleobases (viz. A, 5BrU and 5IU). The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of logK values.  相似文献   

15.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

16.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

17.
The binary and ternary complexes of Cu2+, Ni2+, Co2+ and Zn2+ metal ions with resorcinol (R) as primary ligand and some biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids) as secondary ligands were studied in aqueous solution at 25 °C and I=0.1 mol⋅dm−3 NaNO3 using the potentiometric technique. The formation of different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes is inferred from the corresponding potentiometric pH-titration curves. The ternary complex formation was found to take place in a stepwise manner. The protonation constants of the ligands were determined and used for determining the stability constants of the different complexes formed in aqueous solutions. The lower stability of the 1:2 binary complexes compared to the corresponding 1:1 systems of all ligands studied were in accordance with statistical considerations. The order of stability of the complexes formed in solution was investigated in terms of the nature of the resorcinol, carboxylic acid, and metal ion used. The values of Δlog 10 K, percentage of relative stabilization (% R.S.), and log 10 X for mixed-ligand complexes studied have been evaluated and discussed. The concentration distribution of the various species formed in solution was evaluated. The mode of chelation of the ternary complexes was ascertained by conductivity measurements.  相似文献   

18.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

19.
The basic aqueous coordination chemistry of RuII has been studied using the catalytically important TPPTS phosphine (TPPTS=trisodium salt of 3,3′,3″‐phosphinetriylbenzenesulfonic acid) and small gas molecules (H2, CO, N2) as ligands. As a result, new water‐soluble ruthenium mixed hydride complexes, presumably key species in many industrial catalytic processes, have been formed and identified. The RuII mixed hydrides were synthesized, and their formation was followed in situ by multinuclear NMR spectroscopy, pressurizing aqueous RuII? TPPTS systems with H2 and CO gas in sapphire NMR tubes. The formation equilibrium of these complexes is highly dependant on the temperature and the gas pressures. Under 50 atm of N2, the unique [RuH(CO)(N2)(TPPTS)2(H2O)]+ complex has been identified, which could be the first step toward dinitrogen activation.  相似文献   

20.
Summary The preparation of oxamic acid complexes of general formula M(H2NCOCOO)2·xH2O (M = MnII, CoII, NiII, CuII or ZnII; x = 1 for CuII, x = 2 for the other metals) is reported. The i.r. and Raman spectra are discussed considering a trans-octahedral structure, formed by five-membered chelate rings with the amide oxygen and one carboxylic oxygen as donor atoms. The apical positions are occupied by water molecules. The thermal degradation process is very similar for the different complexes, first losing H2O in one or different steps, then the fragments of the organic ligand to give the metal oxide as residue. The thermal degradation of the CuII and ZnII compounds results in the formation of a new polymeric compound by deprotonation of the primary amide function in an endothermic process, the polymer further decomposes to form the metal oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号