首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
将PdAg纳米颗粒负载到MIL-101(Fe)上作为硼氢化钠水解制氢的催化剂。采用XRD、TEM、HRTEM、XPS、SEM和EDS等方法对催化剂PdAg/MIL-101(Fe)的结构进行了表征。PdAg/MIL-101(Fe)在硼氢化钠水解制氢中表现出较高的催化活性,在温和的条件下水解制氢最大速率为2.60 L·min–1·gcat.–1。详细研究了反应温度、催化剂用量、氢氧化钠和硼氢化钠浓度对该催化反应的影响规律。结果发现,制氢速率很大程度上依赖于反应温度,随着反应温度的升高,制氢速率明显增加,制氢的表观活化能为54.89 kJ·mol–1。该催化剂重用性能好,5次循环后仍能保持活性。  相似文献   

2.
采用铜-银双金属纳米颗粒作为催化剂,在2,2'-联吡啶作为配体的修饰作用下,发展了一个高效的、双金属催化的醛-端炔加成生成炔丙醇化合物的反应体系.在该催化体系中,铜-银双金属纳米颗粒催化剂表现出独特的双金属协同效应,银纳米颗粒作为助催化剂有效提高了铜催化剂的催化效能.与文献相比,该反应条件温和、底物适应性优良,且无需溶剂.该反应中,催化剂可以实现有效循环利用,并可有效放大到克级规模反应.  相似文献   

3.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上, 制备了Pt/MIL-101(Cr)催化剂, 并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明, Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0wt%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能, 在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

4.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上,制备了Pt/MIL-101(Cr)催化剂,并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明,Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能,在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

5.
报道了一种纳米金催化(杂环)芳基酯与卤代烷经由C—O键活化的酯交换反应.在一系列负载金纳米颗粒和钯纳米颗粒催化剂中,粒径为3.63nm,负载量为3wt%的Au/γ-Al_2O_3催化剂表现出最佳催化活性.该催化剂重复使用五次后仍表现出较高活性.对反应前后催化剂的X射线光电子能谱(XPS)分析表明,该反应可能是通过以Au~0为始态的催化循环来进行的.  相似文献   

6.
纳米氧化铜用于温和条件下的异丙苯氧化研究   总被引:11,自引:0,他引:11  
采用水热合成方法制备了具有片状结构的纳米CuO催化剂.该催化剂在温和的条件下对以分子氧为氧化剂的异丙苯氧化反应表现出高效的催化活性.在85℃、常压、催化剂用量为0.02g/mL异丙苯的条件下,反应9h,异丙苯的转化率、选择性和收率分别为55.1%、94.1%和51.8%.研究发现,该纳米CuO催化剂可以循环使用.同时对该纳米CuO催化剂催化其它含有α-H的芳烃化合物甲苯和乙苯的氧化反应进行了研究.实验结果表明,该催化剂的活性顺序为异丙苯>乙苯>>甲苯.  相似文献   

7.
随着资源枯竭和环境污染严重问题的凸显,生物质转化的研究越来越多,特别是生物质催化裂解制备生物燃料及高附加值的化学品.糠醛是一种半纤维素酸解的产物,也是生产糠醇、四氢糠醇、2-甲基呋喃、环戊酮等的重要原料.其中四氢糠醇既可以用于生产其他高附加值化学品,也可以用作生物燃料或者燃料添加剂.虽然Pd/MFI,Ni/SiO2,Pd-Ir/SiO2等催化剂均可用于糠醛选择加氢制备四氢糠醇,但是反应通常在高温高压条件下进行.为此我们希望找到一种在温和条件下使用的高效催化剂.MOF多孔材料具有丰富的孔道结构、极高的比表面积、表面可修饰的特点,还可与其他客体发生相互作用,进而影响催化性能.因此本课题组合成了一种含有氨基的MOF材料MIL-101(Cr)-NH2,进一步利用表面氨基吸附Pd的氯酸盐前体,经还原直接制得负载型催化剂Pd@MIL-101(Cr)-NH2,并用于糠醛选择加氢反应.本文采用X射线粉末衍射(PXRD)、热重分析(TG)、N2物理吸附-脱附、透射电镜(TEM)等手段表征了所制的MOFs和催化剂.通过将MIL-101(Cr)-NH2和不同Pd@MIL-101(Cr)-NH2的XRD谱与标准谱图对比,发现MIL-101(Cr)-NH2已成功合成,并在催化剂制备过程中和反应之后仍然保持稳定.TG结果表明,所制备MIL-101(Cr)-NH2在低于350 ℃C时结构不会被破环.MIL-101(Cr)-NH2的比表面积可达到1669 m2g?1,孔容达1.35 cm3g?1,从而为Pd纳米粒子均匀分散在载体上提供了可能性.各Pd@MIL-101(Cr)-NH2样品的TEM照片我们看出,Pd纳米粒子可均匀分散在MIL-101(Cr)-NH2上,粒径为3?4 nm.对比实验表明,氨基与金属的相互作用有利于Pd纳米粒子分散均匀.将Pd@MIL-101(Cr)-NH2用于糠醛选择加氢反应时,在40 ℃C,2 MPa H2的温和条件下,反应6 h后糠醛完全转化为四氢糠醇其选择性接近100%.表现出比文献报导的更加优异的催化性能.这得益于高度均匀分散的Pd纳米粒子,以及催化剂载体与Pd纳米粒子的配位作用和π-π相互作用.结果还表明当高于80℃C反应时,即有副产物生成,进一步提高反应温度会促进环戊酮的生成.可见,Pd@MIL-101(Cr)-NH2所表现的低温高加氢活性对提高四氢糠醇选择性至关重要.  相似文献   

8.
采用水热法合成了含有89%{101}晶面的TiO_2纳米锭(TiO_2-101)和77%{001}晶面的TiO_2纳米片(TiO_2-001),将其用作载体来制备担载钯催化剂;研究了上述制备的TiO_2纳米材料对Pd/TiO_2-101和Pd/TiO_2-001催化剂用于乙炔选择加氢制聚合级乙烯催化性能的影响。结果表明,Pd/TiO_2-101催化剂表现出更好的乙炔转化率和乙烯收率。通过氢气程序升温脱附(H_2-TPD)、氢气程序升温还原(H_2-TPR)、透射电子显微镜(TEM)、CO化学吸附、X射线光电子能谱(XPS)和热重分析仪(TGA)等对催化剂进行了结构表征和分析。TEM和CO化学吸附结果表明,Pd纳米颗粒(NPs)在TiO_2-101载体上有较小的颗粒尺寸(1.53 nm)和较高的分散度(15.95%);而Pd纳米颗粒在TiO_2-001载体上的颗粒尺寸是4.36 nm和9.06%的分散度。Pd/TiO_2-101催化剂上较小的Pd颗粒尺寸及其较高的分散度使催化剂具有更多的反应活性位点,这促进了其反应的催化活性。  相似文献   

9.
以球状聚苯并噁嗪为载体,氯钯酸为前驱体,通过浸渍热解法制备钯炭纳米催化剂,用于苯甲醇氧化反应。通过一步热解法制备的钯炭纳米催化剂,利用氯钯酸前驱体和聚苯并噁嗪的强固载作用实现钯纳米颗粒均匀分布在载体上,平均直径约为2. 6 nm。该催化剂在苯甲醇氧化反应中,反应2 h即可实现反应物苯甲醇全部转化为产物苯甲醛,表现出良好的催化活性。基于Micromeritics AutoChem II 2920化学吸附仪分别采用CO脉冲法和H_2-O_2滴定法测定钯炭纳米催化剂金属分散度,并结合透射电子显微镜(TEM)和X射线衍射(XRD)等表征手段进一步测试催化剂分散度。结果显示,CO脉冲法测试结果与TEM和XRD测试结果吻合,而H_2-O_2滴定法测试结果偏高,高出约2%~4%,这是由于H_2-O_2滴定法存在氢溢流现象。根据CO脉冲法测试的金属分散度计算出钯炭纳米催化剂在苯甲醇氧化反应中的TOF值最高可达123 h~(-1)。  相似文献   

10.
随着资源枯竭和环境污染严重问题的凸显,生物质转化的研究越来越多,特别是生物质催化裂解制备生物燃料及高附加值的化学品.糠醛是一种半纤维素酸解的产物,也是生产糠醇、四氢糠醇、2-甲基呋喃、环戊酮等的重要原料.其中四氢糠醇既可以用于生产其他高附加值化学品,也可以用作生物燃料或者燃料添加剂.虽然Pd/MFI,Ni/SiO_2,Pd-Ir/SiO_2等催化剂均可用于糠醛选择加氢制备四氢糠醇,但是反应通常在高温高压条件下进行.为此我们希望找到一种在温和条件下使用的高效催化剂.MOF多孔材料具有丰富的孔道结构、极高的比表面积、表面可修饰的特点,还可与其他客体发生相互作用,进而影响催化性能.因此本课题组合成了一种含有氨基的MOF材料MIL-101(Cr)-NH_2,进一步利用表面氨基吸附Pd的氯酸盐前体,经还原直接制得负载型催化剂Pd@MIL-101(Cr)-NH_2,并用于糠醛选择加氢反应.本文采用X射线粉末衍射(PXRD)、热重分析(TG)、N2物理吸附-脱附、透射电镜(TEM)等手段表征了所制的MOFs和催化剂.通过将MIL-101(Cr)-NH_2和不同Pd@MIL-101(Cr)-NH_2的XRD谱与标准谱图对比,发现MIL-101(Cr)-NH_2已成功合成,并在催化剂制备过程中和反应之后仍然保持稳定.TG结果表明,所制备MIL-101(Cr)-NH_2在低于350°C时结构不会被破环.MIL-101(Cr)-NH_2的比表面积可达到1669 m~2 g~(-1),孔容达1.35 cm~3 g~(-1),从而为Pd纳米粒子均匀分散在载体上提供了可能性.各Pd@MIL-101(Cr)-NH_2样品的TEM照片我们看出,Pd纳米粒子可均匀分散在MIL-101(Cr)-NH_2上,粒径为3-4 nm.对比实验表明,氨基与金属的相互作用有利于Pd纳米粒子分散均匀.将Pd@MIL-101(Cr)-NH_2用于糠醛选择加氢反应时,在40℃,2 MPaH_2的温和条件下,反应6 h后糠醛完全转化为四氢糠醇其选择性接近100%.表现出比文献报导的更加优异的催化性能.这得益于高度均匀分散的Pd纳米粒子,以及催化剂载体与Pd纳米粒子的配位作用和π-π相互作用.结果还表明当高于80℃反应时,即有副产物生成,进一步提高反应温度会促进环戊酮的生成.可见,Pd@MIL-101(Cr)-NH_2所表现的低温高加氢活性对提高四氢糠醇选择性至关重要.  相似文献   

11.
利用酰胺化反应在2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)分子的4位引入乙酰氨基和异烟酰氨基分别获得Acet-TEMPO和isoNTA-TEMPO分子.将Acet-TEMPO、 isoNTA-TEMPO和TEMPO分别与MIL-101(Fe)组成共催化体系,以苯甲醇选择性氧化为苯甲醛做模型反应,研究上述3种催化体系的催化性能.催化结果表明3种催化体系的催化活性顺序为:MIL-101(Fe)/isoNTA-TEMPO MIL-101(Fe)/Acet-TEMPOMIL-101(Fe)/TEMPO.通过对比实验和吸附实验表明isoNTA-TEMPO的吡啶官能团与MIL-101(Fe)的Fe簇配位作用是提高体系催化性能的关键因素.MIL-101(Fe)/isoNTA-TEMPO催化体系对各种芳香醇均表现出较好的催化性能,且催化剂能循环回收利用.  相似文献   

12.
Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.  相似文献   

13.
过渡元素掺杂对纳米TiO_2光催化剂性能的影响   总被引:39,自引:2,他引:37  
以沉淀法制备得到了第一过渡系23至30号元素(V, Cr, Mn, Fe, Co, Ni, Cu, Zn)分别掺杂的纳米TiO_2光催化剂。考察了它们光催化降角水中十二烷基苯磺酸 钠的活性,研究了它们的光催化活性与催化剂微晶结构、电子亲和势与离子半径比 、离子的磁矩之间的关系。发现其催化活性的变化与这些元素的稳定氧化态的电子 亲和势与离子半径的比值和掺杂原子的磁矩具有较好的相关性。而催化剂的(101 )晶面的XRD衍射强度、微晶尺寸和晶格畸变应力对催化活性也具有一定的影响。  相似文献   

14.
The catalytic performances of Cr-MIL-101 and Fe-MIL-101 porous coordination polymers have been investigated in the allylic oxidation of alkenes, including natural terpenes, with molecular oxygen (1 atm) under mild solvent-free conditions. Both catalysts remain stable under optimal conditions (40°C for Fe-MIL-101 and 60°C for Cr-MIL-101) and can be recycled, at least, four times without loss of the catalytic properties. Fe-MIL-101 favours the formation of unsaturated alcohols, while Cr-MIL-101 mediates the formation of unsaturated ketones. The oxidation process involves the formation of alkene hydroperoxide via conventional radical chain process and its further transformations over the MIL-101 catalysts. The mechanism of the hydroperoxide transformation strongly depends on the metal nature.  相似文献   

15.
Anatase TiO2 nanospindles containing 89% exposed {101} facets (TiO2-101) and nanosheets with 77% exposed {001} facets (TiO2-001) were hydrothermally synthesized and used as supports for Pd catalysts. The effects of the TiO2 materials on the catalytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene. The Pd/TiO2-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield. To understand these effects, the catalysts were characterized by H2 temperature-programmed desorption (H2-TPD), H2 temperatureprogrammed reduction (H2-TPR), transmission electron microscopy (TEM), pulse CO chemisorption, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The TEM and CO chemisorption results confirmed that Pd nanoparticles (NPs) on the TiO2-101 support had a smaller average particle size (1.53 nm) and a higher dispersion (15.95%) than those on the TiO2-001 support (average particle size of 4.36 nm and dispersion of 9.06%). The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalyst provided more reaction active sites, which contributed to the improved catalytic activity of this supported catalyst.  相似文献   

16.
采用溶胶-凝胶法制备了MgO和SiO2的二元复合氧化物载体, 通过浸渍法制得NiO/MgxSi1-xOy催化剂, 并使用Brunauer-Emmett-Teller(BET)吸附、载射线衍射(XRD)、透射电子显微镜(TEM)等对其进行表征. 以甲苯和萘的混合物作为高温焦炉煤气中焦油组分的模型化合物, 在固定床反应器中进行高温焦炉煤气中焦油组分催化裂解的研究. 结果表明, 催化剂的焙烧温度、反应空速以及载体中Mg和Si的原子比对反应活性有很大的影响. 在反应温度800 益、水碳摩尔比为0.7的条件下, 10%(w)NiO/Mg0.80Si0.20Oy催化剂能将甲苯和萘完全转化为CO、CH4等小分子气体, 显示出很好的催化活性、稳定性以及好的抗积炭性能.  相似文献   

17.
Efficient conversion of straw cellulose to chemicals or fuels is an attracting topic today for the utilization of biomass to substitute for fossil resources. The development of catalysts is of vital importance.In this work, a composite catalyst metal-organic frameworks(MOFs) immobilized on three-dimensional reduced graphene oxide(3D-r GO) were synthesized by in situ growth of the MIL-101(Cr) within the 3Dr GO matrix. The supporting of 3D-r GO guaranteed the dispersion and acid site density of MI...  相似文献   

18.
A simple, one‐step mechanochemical procedure for immobilisation of homogeneous metathesis catalysts in metal–organic frameworks was developed. Grinding MIL‐101‐NH2(Al) with a Hoveyda–Grubbs second‐generation catalyst resulted in a heterogeneous catalyst that is active for metathesis and one of the most stable immobilised metathesis catalysts. During the mechanochemical immobilisation the MIL‐101‐NH2(Al) structure was partially converted to MIL‐53‐NH2(Al). The Hoveyda–Grubbs catalyst entrapped in MIL‐101‐NH2(Al) is responsible for the observed catalytic activity. The developed synthetic procedure was also successful for the immobilisation of a Zhan catalyst.  相似文献   

19.
通过一步水热合成法制备了大比表面积、高脱硫活性的磷钨酸(HPW)负载的金属有机框架HPW@MIL-101(Cr)催化剂,对其进行了FT-IR、XRD和氮吸附等表征,并研究了合成时间、合成温度、酸碱度及HPW负载量等参数对催化剂脱硫性能的影响。结果表明,随着合成时间的延长、合成温度的提高,HPW@MIL-101(Cr)孔道有序度提高;合成温度低于等于140℃时,不能形成M IL-101(Cr)晶体结构;酸性合成条件合成的HPW@M IL-101(Cr)的孔道有序度降低;随着HPW负载量的增加,HPW@MIL-101(Cr)的催化性能呈现先升高后降低的趋势。在12 h、220℃和中性条件下制备得到的负载量为3.5 g的HPW@MIL-101(Cr)催化剂具有最佳脱硫活性;在模拟油20 mL、催化剂用量0.24 g、氧硫比为8和50℃条件下反应120 min,对苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩脱硫率分别为99%、100%和99%;与HPW相比,苯并噻吩脱硫率提高了2.4倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号