首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rigidity (G) of colloidal crystals in organic solvents of acetonitrile and nitrobenzene has been measured by reflection spectroscopy in sedimentation equilibrium. The colloidal spheres used are the silica spheres (136 nm in diameter) modified on their surfaces with polymers, poly(maleic anhydride-co-styrene) [P(MA-ST)], poly(methyl methacrylate) (PMMA), or polystyrene (PST). Log G increases linearly with the slope of unity as log N (number density of colloidal spheres) increases. The mean values of the b-factor, which is the fluctuation parameter in crystal lattices and should be smaller than 0.1 according to the Lindeman's rule, are 0.045±0.003, 0.039±0.007, and 0.038±0.003 for P(MA-ST)/SiO2, PMMA/SiO2, and PST/SiO2, respectively. These values are larger than that of colloidal crystals of mother silica spheres in the deionized aqueous suspension, 0.028. These results support the important role of the excluded volume effects from the polymer layers formed around the silica surfaces. However, contribution of the excluded volume effects from the electrical double layers formed around the spheres in the organic solvents is also effective in the colloidal crystallization. Electronic Publication  相似文献   

2.
 The nucleation and growth rates in the colloidal crystallization of silica spheres (136 nm in diameter) modified with polymers on their surface were measured by time-resolved reflection spectroscopy. The polymers were poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(methyl methacrylate) (PMMA). The induction period for nucleation decreased sharply when the sphere concentration increased. The crystal growth process consisted of a fast growing step leading to metastable crystals (rate v 1) and a slow growth rate accompanied by the formation of stable crystals. The crystal size of the P(MA-ST)/SiO2 particles decreased from 0.4 to 0.06 mm, whereas v 1 increased from 13 to 37 μm/s, when the particle concentration increased. The slow step was also observed for almost all the samples but was not analyzed since the rate was too small. For PMMA/SiO2 dispersions, the crystal size (0.17–0.3 mm) and v 1 (43–166 μm/s) did not show any relation to the particle concentration but showed a linear relationship with the molecular weight of PMMA. These results suggest the important role of the excluded-volume effects of the polymer layers around the silica surface. The contribution of the repulsion due to the electrical double layers is still effective in the colloidal crystallization in acetonitrile. Received: 6 June 2001 Accepted: 20 September 2001  相似文献   

3.
4.
Drying dissipative structural patterns formed in the course of drying colloidal crystals of silica spheres (110 nm in diameter) in water, methyl alcohol, ethyl alcohol, 1-propyl alcohol, diethyl ether, and in the mixtures of ethyl alcohol with the other solvents above have been studied on a cover glass. The macroscopic broad rings were formed in the outside edges of the dried film for all the solvents examined. Furthermore, much distinct broad rings appeared in the inner area when the solvents were ethyl alcohol, methyl alcohol, and their mixtures. Profiles of the thickness of the dried films were sensitive to the organic solvents and explained well with changes in the surface tensions, boiling points, and viscosities of the solvents. The macroscopic and microscopic spoke-like crack patterns formed. The drying area (or the drying time) increased (or decreased) as the surface tension of the solvent decreased. However, the absolute values of these drying parameters are determined also by the boiling points of the solvents. Importance of the fundamental properties of the solvents is supported in addition to the characteristics of colloidal particles in the drying dissipative pattern formation.  相似文献   

5.
The formation of colloid crystals from monodisperse and polymer-modified silica particles in organic solvents was investigated. Maleic anhydride–styrene copolymer-modified silica formed crystals in polar organic solvents, which dissolve the copolymer, while the original colloidal silica formed crystals in organic solvents which were miscible with water. The critical volume fraction in the crystal formation of the polymer-modified silica was lower than that from the unmodified silica in the same solvent. Polystyrene- and poly(methyl methacrylate)-modified silica particles also crystallized in organic solvents, but the features of the formation were different from those of poly(maleic anhydride-styrene)-modified particles. Received: 19 September 1998 Accepted in revised form: 1 January 1999  相似文献   

6.
Colloidal crystallization of copolymer-grafted silica containing ferrocenyl groups in organic solvents and effects of ferrocenyl groups on effective refractive index of colloidal crystal systems were investigated. Poly(ferrocenyl metharylate (FeMA)-co-methyl methacrylate (MMA)-grafted silica gave colloidal crystallization in dimethylformamide and acetonitrile. The colloidal crystals exhibited characteristic coloration due to cooperative effects of specific absorption at 400–500 nm by ferrocenyl group and transmission of 700–800-nm light through the crystals. It was observed that effective refractive index of colloidal crystals systems of poly(FeMA-co-MMA)-grafted silica was higher than that of poly(MMA)-grafted silica. Normalized effective refractive index of the system linearly increased with mole fraction of FeMA in grafted copolymer. However, poly(FeMA-block-MMA) did not bring effective increase of the index because of bias formation of ferrocenyl group on silica.  相似文献   

7.
8.
9.
Colloidal dispersions of C60 and C70 were prepared by simply mixing a fullerene solution in a good solvent with a poor polar organic solvent for fullerenes. The process was very easy and fast and the formation of particles with average diameter in the colloidal range was detected immediately after the components were mixed. The formation and the properties of the fullerene particles were studied mainly with dynamic light scattering and high-resolution transmission electron microscopy. The most interesting findings are the long-term colloid stability of the samples in the absence of any stabilizers, the relatively narrow size distribution, and the different average sizes of the particles formed by C60, C70, and their mixtures. The influence of various factors such as fullerene concentration, mixing procedure, solvent properties, and C60/C70 ratio was investigated. It is shown that the smaller particles are formed when the total fullerene concentration in the good solvent is decreased and that the fullerene particles have crystalline structure. The measured negative values for the electrophoretic mobility of the particles suggest that fullerene dispersions in polar organic solvents are stabilized by repulsive electrostatic interactions.  相似文献   

10.
Polyacrylic acid (PAA) and polyacrylamide (PAAm) double network (DN) hydrogels with high mechanical strength (about 1.5 MPa) are obtained when two kinds of monomer solutions of 4M AA with 5 mol% crosslinker and 4M AAm with 0.1 mol% crosslinker are used for the optimal preparation. Their high mechanical strength can be maintained even at high water content (above 50%) and at external stimuli (solvent and pH). This optimized DN hydrogel is used to develop the PAA/PAAm inverse opal hydrogel with DN structure by twice infiltration-polymerization and colloidal templating. Its photonic stop band can be tuned by controlling the solvent and pH. It first shows a small red-shift (about 20 nm), and then a large blue-shift (about 180 nm) with the increased ethanol content. For pH response, the DN inverse opal hydrogel has a large stop-band shift of about 140 nm when the pH increases from 1.2 to 5.6. Moreover, the DN inverse opal hydrogel also shows rapid recovery ability without hysteresis phenomenon in strong acidic environment, good reproducibility and durability. The interaction between the independently crosslinked PAA network and PAAm network plays a significant role in determining the response performance.  相似文献   

11.
A new procedure for preparing aqueous colloidal dispersion of C60 in water was developed.  相似文献   

12.
We report on a novel high temperature liquid phase "calcination" method with trioctylphosphine oxide (TOPO), tri-n-octylamine (TOA), and squalene for removing the template and strengthening the silica network in colloidal mesoporous silica (CMS) nanoparticles. For such materials, the common calcination procedure in air would result in strong agglomeration, thus preventing their use in colloidal suspensions. The highest efficiency of the new approach is obtained by thermal calcination in TOPO at only 275 °C, as shown by an increasing degree of silica condensation, and the retention of the high colloidal stability of the CMS nanoparticles. Moreover, we also show the ability of the TOPO treatment to remove the template, thus saving a preparation step. The resulting CMS nanoparticles retain the ordered mesostructure, high porosity, and large surface area of the original mesoporous nanoparticles, while showing a much greater degree of silica condensation and high stability. The concept of "liquid calcination" represents a powerful general approach for the preparation of stable colloidal porous nanoparticles.  相似文献   

13.
Summary The separation selectivity of temperature-responsive poly(N-isopropylacrylamide)-modified silica as a packing material for high performance liquid chromatography was investigated with steroids, alkaloids, and substituted anilines as solutes. The elution profiles of the solutes depended on the temperature of the column and the methanol content of the mobile phase, indicating that the separation selectivity could be controlled by the column temperature or the mobile phase composition.  相似文献   

14.
Highly transparent colloidal solutions of detonation nanodiamonds in organic solvents such as tetrahydrofuran (THF), methyl ethyl ketone (MEK) and acetone were attained in this investigation through an easy process, in which the detonation nanodiamond powder was oxidized at 420 °C for 1.5 h and then dispersed into solvents by beads-milling with the addition of the surfactant, oleylamine (OLA). The results of both Fourier transform infrared spectroscopy and zeta potential measurements confirm that a readily apparent number of Lewis acid sites composed of mainly carboxylic acid and cyclic acid anhydrides were derived on the surface of thermally oxidized nanodiamond (T-ND). This acid sites-derived T-ND is chemically active, favoring the formation of charge-transfer complexes with the amino-containing surfactants such as OLA and octadecylamine (ODA). After being dispersed with one of the surfactants, OLA or ODA, the T-ND shows good dispersion stability in organic solvents; however, the dispersion efficiency of the saturated ODA is not as good as that of the unsaturated OLA. By using the dispersant OLA, accompanied with de-agglomeration by beads-milling, a clear colloidal solution of T-ND in solvents of THF, MEK or acetone can be easily attained and stabilized for at least 3 months.  相似文献   

15.
Time-resolved anisotropy decays of a fluorescent cationic solute, rhodamine 6G (R6G), in Ludox sols were measured to characterize the extent of the ionic binding of the probe to silica particles after modification of the surface with neutral or cationic silane coupling agents. The anisotropy decays provided direct evidence for distribution of the dye between the aqueous solution (picosecond decay component) and silica particles (nanosecond decay component and residual anisotropy component, which were attributed to the wobbling motion of dye on the silica surface and to the ionically bound probe, respectively). The dye was strongly adsorbed to unmodified silica nanoparticles, to the extent that less than 1% of the dye was present in the surrounding aqueous solution. Significant decreases in the degree of probe adsorption were obtained upon covalent modification of the silica with neutral or cationic silanes, with up to 80% of the probe being present in the aqueous solution in cases where the surface was coated with (3-aminopropyl)triethoxysilane. The addition of such agents also altered the fractional distribution between the nanosecond decay component and the residual anisotropy component in favor of the nanosecond component, indicative of weaker interactions between the dye and the modified surface (i.e., more wobbling motion). The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the modification of silica surfaces and should prove useful in characterization of new chromatographic stationary phases.  相似文献   

16.
The influence of polyvinyl alcohol (PVA) and polyacrylamide (PAM) on the stability of acidic colloidal silica in aqueous environment was examined. Experiments were carried out on the original colloidal silica (CS), PVA modification and PAM modification. PVA- and PAM-modified CS could remain stable for 20 and 13 days in the oven under 50 °C; however, nonmodified CS is only stable for 9 days. The thermal stability of CS was significantly improved through PVA modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the modified particles reveal better dispersibility. The action mechanism between polymer and CS was studied by particle size distribution, zeta potential, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR). The results show that the modified silica particles acquire more negative charge and the interactions among silica particles and PVA are stronger than among silica particles and PAM. Such differences appeared to be due to the loss of water molecules between C–OH of PVA and Si–OH bonds, which form a dense monomolecular adsorbed layer on the surface of the silica particles, thus increasing space steric repulsion. However, for the situation of PAM, the interaction was weakened. The results provided important basis to optimize stability of acidic CS in the aqueous environment.  相似文献   

17.
Silica sol doped with organic pigment was prepared by hydrolyzing tetraethoxysilane with a basic catalyst via dispersing pigment in silica sol. The colloidal properties of SiO2/pigment hybrid sol and its deposited film were investigated. The presence of pigment in SiO2/pigment hybrid sol affects the Zeta potential, particle size and surface tension compared to the silica sol without pigment. The SiO2/pigment hybrid sol exhibited good dispersion stability in the centrifuge process. The maximum absorption wavelength was consistent with that of the pigment disperse solution, indicating that the pigment in SiO2/pigment hybrid sol remained unchanged. Thermogravimetric analysis of the contents of organic component in silica sol and SiO2/pigment hybrid sol were conducted, and the differential value was ascribed to the weight of the pigment and the condensate of polyoxyethylene octylphenol ether (OP-10) and γ-Glycidoxypropyltrimethoxysilane (KH-560). The surface topography of SiO2/pigment hybrid silica film was characterized by AFM. The analysis of silica sol doped with organic pigment provides useful information for an effective pathway to disperse pigment on fiber and other substrates.  相似文献   

18.
Spin-labeled polylactide brush polymers were synthesized via ring-opening metathesis polymerization (ROMP), and nitroxide radicals were incorporated at three different locations of brush polymers: the end and the middle of the backbone, and the end of the side chains (periphery). Electron paramagnetic resonance (EPR) was used to quantitatively probe the macromolecular structure of brush polymers in dilute solutions. The peripheral spin-labels showed significantly higher mobility than the backbone labels, and in dimethylsulfoxide (DMSO), the backbone end labels were shown to be more mobile than the middle labels. Reduction of the nitroxide labels by a polymeric reductant revealed location-dependent reactivity of the nitroxide labels: peripheral nitroxides were much more reactive than the backbone nitroxides. In contrast, almost no difference was observed when a small molecule reductant was used. These results reveal that the dense side chains of brush polymers significantly reduce the interaction of the backbone region with external macromolecules, but allow free diffusion of small molecules.  相似文献   

19.
In this work we use the vapor-sorption equilibrium data to show the degree of solvent upturn in each solvent-polymer system. For this purpose, sixty-one isothermal data sets for forty copolymer + solvent binaries and for fourteen of their parent homopolymer + solvent binaries have been used in the temperature range of 23.5-80 °C. Solvents studied are acetone, acetonitrile, 1-butanol, 1,2-dichloroethane, chloroform, cyclohexane, hexane, methanol, octane, pentane, and toluene. Copolymers studied are poly(acrylonitrile-co-butadiene), poly(styrene-co-acrylonitrile), poly(styrene-co-butadiene), poly(vinyl acetate-co-ethylene), and poly(vinyl acetate-co-vinyl chloride). All copolymers are random copolymers. Some homopolymers are also studied: polyacrylonitrile, poly(cis-1,4-butadiene), poly(ethylene oxide), polystyrene and poly(vinyl acetate).According to these data sets, solvent weight fraction in the polymer is plotted against solvent vapor activity that is calculated assuming an ideal gas phase of pure solvent vapor neglecting the vapor pressure of the polymer. We use the Flory-Huggins theory to obtain dimensionless interaction parameter, χ. Also the Zimm-Lundberg clustering theory and non-ideality thermodynamic factor, Γ are used to interpret the equilibrium data.  相似文献   

20.
In this work we use the vapor-sorption equilibrium data to show the degree of solvent upturn in each solvent-polymer system. For this purpose, 23 isothermal data sets for four polymer + solvent binaries, one block copolymer + solvent binary and for the corresponding polymer pairs have been used in the temperature range of 25-70 °C. Solvents studied are benzene, carbon tetrachloride, chloroform and pentane. Homopolymers studied are polyisobutylene, poly(ε-caprolactone), poly(ethylene oxide), n-heptadecane, polystyrene, poly(vinyl chloride), poly(vinyl methyl ether), and n-tetracosane.According to these data sets, solvent weight fraction in the polymer is plotted against solvent-vapor activity that is calculated assuming an ideal gas phase of pure solvent vapor neglecting the vapor pressure of the polymer. We use the Flory-Huggins theory to obtain dimensionless interaction parameter, χ. Also the Zimm-Lundberg clustering theory and non-ideality thermodynamic factor, Γ are used to interpret the equilibrium data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号