首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一种连有C_60功能基团的聚磷腈的合成   总被引:3,自引:0,他引:3  
李振  秦金贵 《化学学报》2003,61(8):1335-1337
采用一种后功能化的方法合成一种连有C_60侧基的聚磷腈高分子,即首先合成 了连有苄溴基团的聚磷腈,然后将苄溴基团转换为叠氮基团,再合成连有C_60侧基 的聚磷腈高分子,通过核磁、红外、紫外可见光谱、分子量测定等手段对所得高分 子进行了鉴定,此合成方法为聚磷腈功能材料的合成提供了一条新途径。  相似文献   

2.
聚磷腈的主链是由氮和磷原子以单、双键交替构成的聚合物, 每一个磷原子上连有两个侧基. 由于其具有多样化的独特性能, 如耐水、耐溶剂、耐油和良好的光、热稳定性、抗氧化性、生物相容性、耐辐射、耐低温、可生物降解、不燃烧和阻燃等性能而引起了人们的极大兴趣. 近来, 关于聚磷腈功能材料的研究相当活跃, 涉及阻燃材料、特种橡胶材料、生物医用材料、液晶以及光电功能材料等多个方面[1~4].  相似文献   

3.
We report the synthesis of an insulated π‐conjugated polymer containing 2,2′‐bipyridine moieties as metal coordination sites. Metal coordination to the polymer enabled easy and reversible tuning of the luminescent color without changes to the main chain skeleton. The permethylated α‐cyclodextrin (PM α‐CD)‐based insulation structure allowed the metalated polymers to demonstrate efficient emission even in the solid state, with identical spectral shapes to the dilute solutions. In addition, the coordination ability of the metal‐free polymer was maintained in the solid state, resulting in reversible changes in the luminescent color in response to the metal ions. The synthesized polymer is expected to be suitable for application in recyclable luminescent sensors to distinguish different metal ions.  相似文献   

4.
The synthesis of cationic organoiron polymers with azobenzene moieties in their side chains has been accomplished via nucleophilic aromatic substitution and ring-opening metathesis polymerization (ROMP) reactions. Polyaromatic ethers and thioethers with azobenzene moieties in their side chains were functionalized with different chromophores to yield yellow-, orange- and red-colored polymers. Polynorbornenes with azobenzene-containing side chains were isolated following ROMP of their monomeric analogs. All of the organoiron polymers were soluble in polar organic solvents and underwent reversible electrochemical reduction processes. Photobleaching of the azobenzene-containing polymers was achieved in the presence of hydrogen peroxide. The metallated polymers had glass transition temperatures approximately 50 to 80°C higher than their organic analogs.  相似文献   

5.
Supramolecular functional materials able to respond to external stimuli have several advantages over their classical covalent counterparts. The preparation of soft actuators with the ability to respond to external stimuli in a spatiotemporal fashion, to self‐repair, and to show directional motion, is currently one of the most challenging research goals. Herein, we report a series of metallopolymers based on zinc(II)–terpyridine coordination nodes and bearing photoisomerizable diazobenzene units and/or solubilizing luminescent phenylene–ethynylene moieties. These supramolecular polymers act as powerful gelating agents at low critical gelation concentrations. The resulting multiresponsive organogels display light‐triggered mechanical actuation and luminescent properties. Furthermore, owing to the presence of dynamic coordinating bonds, they show self‐healing abilities.  相似文献   

6.
The eight‐membered cyclic monomer, prepared by Diels–Alder reaction of 1,5‐cyclooctadiene and anthracene, polymerized via Ru‐catalyzed ring‐opening metathesis to efficiently afford high polymers (Mn up to 631,000). Unsaturated moieties in the main chain of the obtained polymer were hydrogenated with a homogeneous ruthenium catalyst in quantitative conversion, confirmed by 1H‐NMR measurement. The self‐standing membranes were provided by casting the tetrahydrofuran solutions of both nonhydrogenated and hydrogenated polymers. The obtained membranes showed high transparency in the region of >300 nm with mechanical flexibility. Thermal gravimetric analysis revealed that both nonhydrogenated and hydrogenated polymers decomposed in two stages. The first‐stage decomposition starting at around 230 °C was caused by retro Diels–Alder reaction forming anthracene, proven by pyrolysis gas chromatography mass spectroscopy (GC‐MS) analyses. Mechanical grinding of the polymers induced the formation of anthracene in solid state, which transformed the polymer into blue‐luminescent materials under UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1392–1400  相似文献   

7.
The photochemical and photophysical properties of the three C121 isomers (I, II, III) were investigated with MADLI-TOF-MS, UV-vis spectra, fluorescence spectra, absorption spectra of their DMA complexes, and theoretical calculations. The three isomers of C121 (I, II, III) have different stabilities under laser irradiation, but isomer I and isomer II show good stability against the heat-induced conversion between different isomers: No conversion between the isomers was found after heating the mixture of isomer I and isomer II at 353 K for 12 h in Ar atmosphere. The results of UV-vis absorption and fluorescence spectra indicate that interactions between two C60 moieties of C60=C=C60 in the ground and singlet states are not significant, C121 (I, II, III) behaves as an electron-acceptor similar to C60. These indicate that the formation of the fullerene chain structure (e.g., C60=C=C60) does not disturb the photochemical and photophysical properties of the C60 monomer itself, even that the properties were enhanced by the formation of the polymer. This is significant for the C60 polymer in photochemical or photoelectronic applications in which C60=C=C60 can be an excellent basic unit of polymers.  相似文献   

8.
Soluble organoiron polyethers, thioethers, and amines were synthesized via nucleophilic aromatic substitution reactions. The synthesis of these classes of organometallic polymers involved either the reaction of cyclopentadienyliron complexes of dichloroarenes with various oxygen and sulfur dinucleophiles or the reaction of ether‐ or amine‐containing diiron complexes with dithiols. Polymerization reactions with the diiron complexes gave rise to organoiron polymers with alternating ether/thioether or amine/thioether bridges. Removal of the iron moieties from the backbone of these polymers allowed for the production of the corresponding organic materials. Furthermore, the organometallic polymers had much higher solubilities than their organic analogues. Thermogravimetric analysis of the organoiron polymers indicated that the polymers lost their metallic moieties at approximately 200 °C, whereas degradation of the polymer backbones occurred around 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1216–1231, 2001  相似文献   

9.
The reactions of tetrahydrofuran solutions of NBu(4)[AuR(2)] (R = C(6)F(5), C(6)Cl(5)) with TlPF(6) and 4,4'-bipyridine lead to the synthesis of the luminescent materials [Tl(bipy)](2)[Au(C(6)F(5))(2)](2) 1 and [Tl(bipy)][Tl(bipy)(0.5)(thf)][Au(C(6)Cl(5))(2)](2) 2 in high yield. The structures of these complexes, as analyzed by X-ray diffraction, consist of planar polymers formed by repetition of Tl-Au-Au-Tl (1) or Tl-Au-Tl'-Au (2) moieties linked through bidentate bridging bipy ligands. In complex 1 these layers are associated via Tl...F contacts between atoms of adjacent planes, whereas in complex 2 each two polymeric layers are linked through additional bridging bipy molecules. Both complexes are strongly luminescent at room temperature and at 77 K in the solid state, losing this characteristic in solution even at high concentrations. The luminescence is attributed to interactions between metal atoms which are strongly affected by their structural dispositions. DFT calculations are in accord with the observed experimental behavior, showing the nature of the orbitals involved in each transition. Detailed analyses reveal a substantial participation of the metals in the transition giving rise to the emission maxima, and also other more energetic bands in which the ligands are involved and which also give rise to these emissions. The obtained theoretical excitation spectra clearly match the experimental results.  相似文献   

10.
Six 1,1‐disubstituted vinylcyclopropanes (VCP) were synthesized from glycine and amino acids bearing hydrophobic moieties, l ‐alanine, l ‐valine, l ‐leucine, l ‐isoleucine, and l ‐phenylalanine. These VCP derivatives efficiently underwent radical ring‐opening polymerization to afford the corresponding polymers bearing trans‐vinylene moiety in the main chains and the amino acid‐derived chiral moieties in the side chains. The polymers were film‐formable, and in the films of polymers bearing the glycine‐ and alanine‐derived side chains, presence of hydrogen bonding was confirmed by IR analysis. Thermogravimetric analysis of the polymers revealed that the temperatures of 5% weight loss were higher than 300 °C. Differential scanning calorimetry clarified that the polymers were amorphous ones showing glass transition temperatures in a range of 48–80 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3996–4002  相似文献   

11.
New synthetic methodologies towards hydrogen bonded supramolecular polymers are described. Focus is directed on synthetic work towards telechelics with hydrogen bonds either as side chain moieties or as endgroups. Physical ordering effects related to polymers and particles are discussed citing own and related work in ∼60 references.  相似文献   

12.
Color-tunable luminescent ionic liquid crystals have been designed as a new series of luminescent materials. To achieve tuning of emission colors, intramolecular charge transfer (ICT) character has been incorporated into tripodal molecules. A series of the compounds has three chromophores in each molecule, incorporated with both electron-donating moieties such as alkylaminobenzene and alkoxybenzene, and electron-accepting moieties such as pyridinium, pyrimidinium, and quinolinium parts. These C(3)-symmetrical molecules self-assemble into liquid-crystalline (LC) columnar (Col) structures over wide temperature ranges through nanosegregation between ionic moieties and nonionic aliphatic chains. Photoluminescent (PL) emissions of these tripodal molecules are observed in the visible region both in the self-assembled condensed states and in solutions. For example, a pyrimidinium salt with didodecylaminobenzene moieties exhibits yellowish orange emission (λ(em) = 586 nm in a thin film). Multicolor PL emissions are successfully achieved by simple tuning of changing electron-donating and electron-accepting moieties of the compounds, covering the visible region from blue-green to red. It has been revealed that ICT processes in the excited states and weak intermolecular interactions play important roles in the determination of the PL properties of the materials, by measurements of UV-vis absorption and emission spectra, fluorescence lifetimes, and PL quantum yields.  相似文献   

13.
Oligomers and polymers of the general types [RR′P(O)OA1F2]n, I, and [F2AlOP(R)(O)OAlF2]n, II, were prepared by the addition of phosphonic or phosphinic acids and hydrogen fluoride to etherated alanes. The hydrocarbon moieties (R,R′) on the phosphonic and phosphinic acids were important determinants of physical and chemical properties. When the alkyl moieties contained six or more carbon atoms type I oligomers were partially crystalline, soluble in tetrahydrofuran, and fused below 415°C. Type II polymers were soluble in tetrahydrofuran when n-octyl or larger alkyl moieties were used, but these polymers tended to be amorphous and liberated solvated tetrahydrofuran below 225°C. Data are presented in support of inter-monomer fluorine bridge bonding; that is, Al? F? Al bonds.  相似文献   

14.
Organoiron polynorbornene containing arylazo or hetarylazo dye chromophores has been prepared via ring opening metathesis polymerization using Grubbs' catalyst. The obtained polymers were isolated as brightly colored materials and displayed good solubility in polar organic solvents. The colors of these polymers were affected by the nature of the incorporated azo chromophores. Thermogravimetric analysis of these materials showed that the cleavage of the cyclopentadienyliron (CpFe+) moieties was between 225 and 231 °C, while the degradation of the polymer backbones occurred between 400 and 450 °C. UV-vis studies in DMF showed that the organoiron polymers containing arylazo dyes exhibit wavelength maxima around 425 nm. However, the replacement of these arylazo moieties with hetarylazo dyes displayed substantial bathochromic shifts in the λmax values (≈ 511 nm).  相似文献   

15.
Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding   总被引:2,自引:0,他引:2  
Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (T(g)) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of T(g) from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks.  相似文献   

16.
High purity 2,7-fluorenedicarboxylic acid chloride was synthesized in a multistep reaction scheme from 2,7-dibromofluorene. Subsequent polycondensation in polyphosphoric acid of 2,5-diamino-1,4-benzenedithiol dihydrochloride with terephthaloyl chloride and 2,7-fluorenedicarboxylic acid chloride led to rigid-rod benzobisthiazole polymers with reactive fluorene moieties. The proportion of fluorene in the resultant polymers was controlled through reaction stoichiometry. Soluble polymers with intrinsic viscosities as high as 33.7 dL/g (methanesulfonic acid, 30°C) were obtained if the polymerization temperature was not allowed to exceed 165°C. Insoluble, presumably crosslinked polymers were obtained at higher temperature (190–200°C). Thermal characterization of the polymers by differential thermal analysis and thermal gravimetric analysis/mass spectroscopy did not disclose any thermal transition to 450°C. Onset of weight loss in air did not occur until over 550°C.  相似文献   

17.
A series of novel, soluble polyazomethines bearing fluorene and carbazole moieties in the main chain and solubility‐improving moieties in the side group (dibutyl, ethylhexyl, thienylethyloxy, furyl, and fluorenyl) were synthesized. Good‐quality films of these polymers were prepared through the conventional solution‐casting and drying processes. Depending on the polymer structure, some polymers showed a glass‐transition temperature (107–167 °C) and others showed a melting temperature (285–341 °C). The temperature of 5% weight loss under nitrogen atmosphere of the polymers ranged from 370 to 464 °C. The results indicated that the side groups incorporated into the polyazomethine structure in this work improved the polymer solubility without sacrificing thermal stability. Depending on the polymer structure, some of the polymers were crystalline whereas others were amorphous. All the polyazomethines were solution‐processable and thermally stable, making them potential candidate materials for applications in microelectronics and aerospace. Moreover, the features in the UV–visible spectra of the polyazomethines were redshifted as compared with those of the monomers from which the polymers were synthesized, indicating that these polymers, if combined with an appropriate doping agent to improve the light‐emitting and conducting abilities, may be good candidate materials for optoelectronic devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 825–834, 2004  相似文献   

18.
A novel synthetic strategy was developed to prepare polyphosphazenes containing C60 moieties as side chains. Thus, a new reactive macromolecular intermediate, polyphosphazene azides ( P1 ), was obtained from poly(dichlorophosphazene) by the direct nucleophilic substitution reaction. Then the azide group in P1 reacted with C60 molecules to afford the first example of C60‐containing polyphosphazenes ( P2 and P3 ). The polymers are soluble in common organic solvents. Molecular structural characterization for the polymers was presented by 1H NMR, 13C NMR, IR, ultraviolet–visible spectra, and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 194–199, 2004  相似文献   

19.
圆偏振发光高分子的研究   总被引:2,自引:0,他引:2  
闫家国  梁晖  卢江 《高分子通报》2002,(4):26-31,F003
综合评述了近年来有关圆偏振发光高分子的研究,包括圆偏振发光高分子的潜在应用及其在发光高分子理论研究上的意义,圆偏振发光高分子的类型与性能表征等。并提出了三条获得高度圆偏振发光高分子的可能途径。  相似文献   

20.
Self‐assembly of luminescent moieties into porous metal–organic frameworks (MOFs) has generated many luminescent platforms for probing volatile organic molecules (VOMs). However, most of those explored thus far have only been based on the luminescence intensity of one transition, which is not efficient for probing different VOMs. We have synthesized a luminescent MOF material containing 1D nanotube channels, and further developed a luminescent dye@MOF platform to realize the probing of different VOMs by tuning the energy transfer efficiency between two different emissions. The dye@MOF platform exhibits excellent fingerprint correlation between the VOM and the emission peak‐height ratio of ligand to dye moieties. The dye@MOF sensor is self‐calibrating, stable, and instantaneous, thus the approach should be a very promising strategy to develop luminescent materials with unprecedented practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号