首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present-day Universe appears to be homogeneous on very large scales. Yet when the casual structure of the early Universe is considered, it becomes apparent that the early Universe must have been highly inhomogeneous. The current paradigm attempts to answer this problem by postulating the inflation mechanism However, inflation in order to start requires a homogeneous patch of at least the horizon size. This paper examines if dynamical processes of the early Universe could lead to homogenization. In the past similar studies seem to imply that the set of initial conditions that leads to homogenization is of measure zero. This essay proves contrary: a set of initial conditions for spontaneous homogenization of cosmological models can form a set of non-zero measure.  相似文献   

2.
Superstring theory suggests a new cosmology whereby a long inflationary phase preceeded a non singular big bang-like event. After discussing how pre-big bang inflation naturally arises from an almost trivial initial state of the Universe, I will describe how present or near-future experiments can provide sensitive probes of how the Universe behaved in the pre-bang era.  相似文献   

3.
Tarun Souradeep 《Pramana》2006,67(4):699-710
Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the ‘standard’ cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early Universe have also been established — ‘acausally’ correlated initial perturbations in a flat, statistically isotropic Universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation — the primordial gravitational wave background.  相似文献   

4.
The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.  相似文献   

5.
Particle production from vacuum fluctuations during inflation is briefly revisited. The moduli problem occurring with light particles produced at the end of inflation is addressed, namely, the fact that some results are in disagreement with nucleosynthesis constrains. A universal solution to this problem is found which leads to reasonable reheating temperatures in all cases. It invokes the assumption that, immediately after inflation, the moduli evolve like nonrelativistic matter. The assumption is justified in the context of massive chaotic inflation where, at the end of inflation, the Universe evolves as if it were matter dominated.  相似文献   

6.
The fundamental paradox of the incompatibility of the observed large-scale uniformity of the Universe with the fact that the age of the Universe is finite is overcome by the introduction of an initial period of superluminal expansion of space, called cosmic inflation. Inflation can also produce the small deviations from uniformity needed for the formation of structures in the Universe such as galaxies. This is achieved by the conjunction of inflation with the quantum vacuum, through the so-called particle production process. This mechanism is explained and linked with Hawking radiation of black holes. The nature of the particles involved is discussed and the case of using massive vector boson fields instead of scalar fields is presented, with emphasis on its distinct observational signatures. Finally, a particular implementation of these ideas is included, which can link the formation of galaxies, the standard model vector bosons and the observed galactic magnetic fields.  相似文献   

7.
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.  相似文献   

8.
Somnath Bharadwaj 《Pramana》1999,53(6):977-987
We briefly discuss some aspects of the problem of forming large scale structures in the Universe. The basic picture that initially small perturbations generated by inflation grow by the process of gravitational instability to give the observed structures is largely consistent with the observations. The growth of the perturbations depends crucially on the contents of the Universe, and we discuss a few variants of the cold dark matter model. Many of these models are consistent with present observations. Future observations hold the possibility of deciding amongst these models.  相似文献   

9.
Thermal inflation is an attractive solution to the cosmological moduli problem. However, domain walls may be formed after thermal inflation and some mechanisms are needed to eliminate the domain wall before it dominates the Universe. We point out that gravitational waves produced by the dynamics of domain walls may be observed by the pulsar timing experiments and future space-borne gravitational wave detectors, which provides a probe into the period of thermal inflation. We also show that the QCD instanton effect can effectively eliminate the domain walls with producing observable amount of gravitational waves.  相似文献   

10.
A new mechanism describing the formation of protogalaxies is proposed, based on the second-order phase transition in the inflation stage and the domain wall formation upon the end of inflation. The presence of closed domain walls with the size markedly exceeding the cosmological horizon at the instant of their formation and the wall collapse in the postinflation epoch (when the wall size becomes comparable with the cosmological horizon) lead to the formation of massive black hole clusters that can serve as nuclei for the future galaxies. The black hole mass distributions obtained do not contradict the available experimental data. The number of black holes with M ~ 100 solar masses (M ) and above is comparable with the number of galaxies in the visible Universe. Development of the proposed approach gives grounds for a principally new scenario of galaxy formation in the model of a hot Universe.  相似文献   

11.
I suggest the existence of a still undiscovered interaction: repulsion between matter and antimatter. The simplest and the most elegant candidate for such a force is gravitational repulsion between matter and antimatter. I argue that such a force may give birth to a new Universe; by transforming an eventual Big Crunch of our Universe, to an event similar to Big Bang. In fact, when a collapsing Universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force may create particle-antiparticle pairs from the surrounding quantum vacuum. The amount of antimatter created from the physical vacuum is equal to the decrease of mass of “black hole Universe” and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so huge and fast, that matter of our Universe may disappear in a fraction of the Planck time. So fast transformation of matter to antimatter may look like a Big Bang with initial size about 30 orders of magnitude greater than the Planck length, questioning the need for inflation. In addition, a Big Crunch, of a Universe dominated by matter, leads to a new Universe dominated by antimatter, and vice versa; without need to invoke CP violation as explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous Universe was dominated by antimatter.  相似文献   

12.
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.  相似文献   

13.
Despite its central role in modern cosmology, doubts are often expressed as to whether cosmological inflation is really a falsifiable theory. We distinguish two facets of inflation, one as a theory of initial conditions for the hot big bang and the other as a model for the origin of structure in the Universe. We argue that the latter can readily be excluded by observations, and that there are also a number of ways in which the former can find itself in conflict with observational data. Both aspects of the theory are indeed falsifiable.  相似文献   

14.
We consider a recent model with sub-millimeter sized extra dimensions, where the field that determines the size of the extra dimensions (the radion) also acts as an inflaton. The radion is also a stable modulus, and its coherent oscillations can potentially overclose the Universe. It has been suggested that a second round of late inflation can solve this problem, however we find that this scenario does not allow for sufficient reheating of the Universe.  相似文献   

15.
We note that the essential idea of inflation, that the Universe underwent a brief period of accelerated expansion followed by a long period of decelerated expansion, can be encapsulated in a "closure condition" which relates the amount of accelerated expansion during inflation to the amount of decelerated expansion afterward. We present a protocol for systematically testing the validity of this condition observationally.  相似文献   

16.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

17.
We consider the possibility that the dark energy responsible for inflation is deposited into extra dimensions outside of our observable Universe. Reheating and all matter can then be obtained from the minimal supersymmetric standard model flat direction condensate involving the Higgs bosons Hu and Hd, which acquires large amplitude by virtue of quantum fluctuations during inflation. The reheat temperature is TRH < or = 10(9) GeV so that there is no gravitino problem. We find a spectral index ns 1 with a very weak dependence on the Higgs potential.  相似文献   

18.
Behaviors of quark matter and strange quark matter which exist in the first seconds of the early Universe in f(R) gravity are studied for Bianchi I and V universes. In this respect, we obtain exact solutions of the modified Einstein field equations by using anisotropy feature of Bianchi I and V space-times. In particular, we investigate exact f(R) functions for Bianchi I as the contribution of strange quark and quark matter. Also, we have concluded that quark matter may contribute to the early acceleration of the universe since quark matter behaves like phantom-type dark energy. Furthermore, obtained f(R) solutions represents early eras of the Universe since f(R) solutions for quark matter coincide with f(R) equations for inflation. From this point, we can reach the conclusion that quarks may be source of the early dark energy of the universe or source of little inflation due to their repulsive force.  相似文献   

19.
The phenomenological constraints on the scalar field potential in cyclic models of the Universe are presented. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.  相似文献   

20.
We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号