首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Femtosecond (fs) laser pulses at variable delay times allowed us to track the fast non-radiative transitions between the manifold of highly excited $\mathrm{M}_{\mathrm{Na}}^{**}$ states to the lower lying fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in CaF2. Two distinct $\mathrm{M}_{\mathrm{Na}}^{**}$ states of the manifold at 3.16?eV ( $\mathrm{M}_{\mathrm{Na}2}^{**}$ ) and 4.73?eV ( $\mathrm{M}_{\mathrm{Na}3}^{**}$ ) were populated using the second (SH) and third harmonics (TH) of fs laser light at 785?nm. The population kinetics of the fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in the 2?eV excitation energy range was revealed by depleting its fluorescence centered at 740?nm using fundamental near infrared (NIR) fs laser pulses. The related time constants for $\mathrm{M}_{\mathrm{Na}2,3}^{**}{\sim}{>} \mathrm{M}_{\mathrm{Na}}^{*}$ relaxation amounted to 1.0±0.14?ps and 3.0±0.3?ps upon SH and TH excitation, respectively.  相似文献   

2.
$(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ $(x=0.07, 0.09, 0.16, 0.22, 0.31)$ films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The influence of Fe doping on the local structure of films was investigated by X-ray absorption spectroscopy (XAS) at Fe K-edge and L-edge. For the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.07, 0.09 \mbox{ and } 0.16$ , Fe ions dissolve into $\mathrm{In}_{2}\mathrm{O}_{3}$ and substitute for $\mathrm{In}^{3+}$ sites with a mixed-valence state ( $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ ) of Fe ions. However, a secondary phase of Fe metal clusters is formed in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.22 \mbox{ and } 0.31$ . The qualitative analyses of Fe-K edge extended X-ray absorption fine structure (EXAFS) reveal that the Fe–O bond length shortens and the corresponding Debye–Waller factor ( $\sigma^{2}$ ) increases with the increase of Fe concentration, indicating the relaxation of oxygen environment of Fe ions upon substitution. The anomalously large structural disorder and very short Fe–O distance are also observed in the films with high Fe concentration. Linear combination fittings at Fe L-edge further confirm the coexistence of $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ with a ratio of ${\sim}3:2$ ( $\mathrm{Fe}^{2+}: \mathrm{Fe}^{3+}$ ) for the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.16$ . However, a significant fraction ( ${\sim}40~\mbox{at\%}$ ) of the Fe metal clusters is found in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.31$ .  相似文献   

3.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

4.
5.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

6.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

7.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

8.
We study the radiative and semileptonic B decays involving a spin-J resonant $K_{J}^{(*)}$ with parity (?1) J for $K_{J}^{*}$ and (?1) J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate $B\to K_{J}^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{\perp}^{K_{J}^{(*)}}$ and $\zeta_{\parallel}^{K_{J}^{(*)}}$ , the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{\perp,\parallel}^{K_{J}^{(*)}}$ exhibit a dipole dependence in q 2. We predict the decay rates for $B\to K_{J}^{(*)}\gamma$ , $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ and $B\to K_{J}^{(*)}\nu \bar{\nu}$ . The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta^{K_{J}^{(*)}}_{\perp,\parallel}$ . Furthermore, if the spin of $K_{J}^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the $K_{J}^{(*)}$ . We also calculate the forward–backward asymmetry of the $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.  相似文献   

9.
In this article, we study the masses and pole residues of the ${1\over2}^{\pm}$ flavor antitriplet heavy baryon states ( $\varLambda _{c}^{+}$ , $\varXi _{c}^{+},\varXi _{c}^{0})$ and ( $\varLambda _{b}^{0}$ , $\varXi _{b}^{0},\varXi _{b}^{-})$ by subtracting the contributions from the corresponding ${1\over2}^{\mp}$ heavy baryon states with the QCD sum rules, and observe that the masses are in good agreement with the experimental data and make reasonable predictions for the unobserved ${1\over2}^{-}$ bottom baryon states. Once reasonable values of the pole residues λ Λ and λ Ξ are obtained, we can take them as basic parameters to study the relevant hadronic processes with the QCD sum rules.  相似文献   

10.
In this paper, we analyze the scalar mesons f 0(980) and f 0(1500) from the decays $\bar{B}^{0}_{s}\to f_{0}(980)\pi^{0},\allowbreak f_{0}(1500)\pi^{0}$ within Perturbative QCD approach. From the leading-order calculations, we find that (a) in the allowed mixing angle ranges, the branching ratio of $\bar{B}^{0}_{s}\to f_{0}(980)\pi^{0}$ is about (1.0~1.6)×10?7, which is smaller than that of $\bar{B}^{0}_{s}\to f_{0}(980)K^{0}$ (the difference is a few times even one order); (b) the decay $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ is better to distinguish between the lowest lying state or the first excited state for f 0(1500), because the branching ratios for two scenarios have about one-order difference in most of the mixing angle ranges; and (c) the direct CP asymmetries of $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ for two scenarios also exists great difference. In scenario II, the variation range of the value ${\mathcal{A}}^{\mathrm{dir}}_{CP}(\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0})$ according to the mixing angle in scenario II is very small, except for the values for mixing angles near 90° or 270°, while the variation range of ${\mathcal{A}}^{\mathrm{dir}}_{CP}(\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0})$ in scenario I is very large. Compared with the future data for the decay $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ , it is easy to determine the nature of the scalar meson f 0(1500).  相似文献   

11.
Chemiluminescence experiments have been performed to assess the state of current $\mathrm{CO}_{2}^{*}$ kinetics modeling. The difficulty with modeling $\mathrm{CO}_{2}^{*}$ lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH? and CH2O?. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate $\mathrm{CO}_{2}^{*}$ emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the $\mathrm{CO}_{2}^{*}$ concentration. Two different wavelengths to capture $\mathrm{CO}_{2}^{*}$ were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband $\mathrm{CO}_{2}^{*}$ was in fact being captured, and not emission from other species such as CH? and CH2O?. As a baseline for time history and peak magnitude comparison, OH? emission was captured at 307 nm simultaneously with the two $\mathrm{CO}_{2}^{*}$ filters. The results from the two $\mathrm{CO}_{2}^{*}$ filters were consistent with each other, implying that indeed the same species (i.e., $\mathrm{CO}_{2}^{*}$ ) was being measured at both wavelengths. A first-generation kinetics model for $\mathrm{CO}_{2}^{*}$ and CH2O? was developed, since no comprehensively validated one exists to date. CH2O? and CH? were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the $\mathrm{CO}_{2}^{*}$ model was only fair, which necessitates future improvements for a better understanding of $\mathrm{CO}_{2}^{*}$ chemiluminescence as well as the kinetics of the ground state species.  相似文献   

12.
The abundances of FeII and FeIII environments within green rusts one, GR1s, that intercalate carbonate, oxalate and methanoate (formate) anions are found from Mössbauer spectra for compositions corresponding to [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[CO $_{3}^{2-}$ ?5H2O]2???, [Fe $^{\rm II}_{4}$ Fe $^{\rm III}_{2}$ (OH)12]2?+??[CO $_{3}^{2-}$ ?3H2O]2???, [Fe $^{\rm II}_{6}$ Fe $^{\rm III}_{2}$ (OH)16]2?+??[C2O $_{4}^{2-}$ ?4H2O]2??? and [Fe $^{\rm II}_{5}$ Fe $^{\rm III}_{2}$ (OH)14]2?+??[2HCOO????3H2O]2???. These formulae correspond to orders α, β and γ where cation distances are (2 × a 0), ( $\surd 3$ × a 0) or a mixture of both leading to (7 × a 0), where ratio x = {[FeIII]/[Fetotal]} = 1/4, 1/3 and 2/7, respectively. Anion distributions within interlayers are also devised and long-range orders determined accordingly.  相似文献   

13.
In the light of the recent Daya Bay result $\theta_{13}^{\mathrm{DB}}=8.8^{\circ}\pm0.8^{\circ}$ , we reconsider the model presented in Meloni et?al. (J. Phys.?G 38:015003, 2011), showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et?al. (New J. Phys. 10:113011,?2008) and where $\theta_{13}=\theta_{13}^{\mathrm{DB}}$ , the predicted values of the CP phase are ????±??/4.  相似文献   

14.
A representation of a specialization of a q-deformed class one lattice ${\mathfrak{gl}_{\ell+1}}$ -Whittaker function in terms of cohomology groups of line bundles on the space ${\mathcal{QM}_d(\mathbb{P}^{\ell})}$ of quasi-maps ${\mathbb{P}^1 \to \mathbb{P}^{\ell}}$ of degree d is proposed. For ? = 1, this provides an interpretation of the non-specialized q-deformed ${\mathfrak{gl}_{2}}$ -Whittaker function in terms of ${\mathcal{QM}_d(\mathbb{P}^1)}$ . In particular the (q-version of the) Mellin-Barnes representation of the ${\mathfrak{gl}_2}$ -Whittaker function is realized as a semi-infinite period map. The explicit form of the period map manifests an important role of q-version of Γ-function as a topological genus in semi-infinite geometry. A relation with the Givental-Lee universal solution (J-function) of q-deformed ${\mathfrak{gl}_2}$ -Toda chain is also discussed.  相似文献   

15.
We have been performing Λ hypernuclear spectroscopic experiments by the (e,e′K +) reaction since 2000 at Thomas Jefferson National Accelerator Facility (JLab). The (e,e′K +) experiment can achieve a few 100 keV (FWHM) energy resolution compared to a few MeV (FWHM) by the (K ?, π ?) and (π +, K +) experiments. Therefore, more precise Λ hypernuclear structures can be investigated by the (e,e′K +) experiment. ${^{7}_{\Lambda}{\rm He}}$ , ${^{9}_{\Lambda}{\rm Li}}$ , ${^{10}_{\Lambda}{\rm Be}}$ , ${^{12}_{\Lambda}{\rm B}}$ , ${^{28}_{\Lambda}{\rm Al}}$ , and ${^{52}_{\Lambda}{\rm V}}$ were measured in the experiment at JLab Hall-C. In addition, ${^{9}_{\Lambda}{\rm Li}}$ , ${^{12}_{\Lambda}{\rm B}}$ , and ${^{16}_{\Lambda}{\rm N}}$ were measured in the experiment at JLab Hall-A.  相似文献   

16.
The $B_{s}^{0}\to J/\psi K_{\mathrm{S}}$ decay has recently been observed by the CDF collaboration and will be of interest for the LHCb experiment. This channel will offer a new tool to extract the angle γ of the unitarity triangle and to control doubly Cabibbo-suppressed penguin corrections to the determination of sin?2β from the well-known $B_{d}^{0}\to J/\psi K_{\mathrm{S}}$ mode with the help of the U-spin symmetry of strong interactions. While any competitive determination of γ is interesting, the latter aspect is particularly relevant as LHCb will enter a territory of precision which makes the control of doubly Cabibbo-suppressed Standard-Model corrections mandatory. Using the data from CDF and the e + e ? B factories as a guideline, we explore the sensitivity for γ and the penguin parameters and point out that the $B_{s}^{0}$ $\bar{B}_{s}^{0}$ mixing phase φ s , which is only about ?2° in the Standard Model but may be enhanced through new physics, is a key parameter for these analyses. We find that the mixing-induced CP violation $S(B_{s}^{0}\to J/\psi K_{\mathrm{S}})$ shows an interesting correlation with sin?φ s , which serves as a target region for the first measurement of this observable at LHCb.  相似文献   

17.
In this note, we prove that the free energies F g constructed from the Eynard–Orantin topological recursion applied to the curve mirror to ${\mathbb{C}^3}$ reproduce the Faber–Pandharipande formula for genus g Gromov–Witten invariants of ${\mathbb{C}^3}$ . This completes the proof of the remodeling conjecture for ${\mathbb{C}^3}$ .  相似文献   

18.
The deformation change of ${^{9}_\Lambda}$ Be and the low-lying states of ${^{12}_{\Lambda}}$ Be are studied by using the antisymmetrized molecular dynamics for hypernuclei (HyperAMD). In ${^{9}_{\Lambda}}$ Be, the Λ hyperon in p orbit enhances nuclear quadrupole deformation, while the Λ hyperon in s orbit reduces it. In ${^{12}_{\Lambda}}$ Be, the ground state parity inverted in 11Be is reverted in ${^{12}_{\Lambda}}$ Be by adding a Λ hyperon as an impurity (impurity effect).  相似文献   

19.
We discuss the structure of renormalized Feynman rules. Regarding them as maps from the Hopf algebra of Feynman graphs to ${\mathbb{C}}$ originating from the evaluation of graphs by Feynman rules, they are elements of a group ${G=\mathrm{Spec}_{\mathrm{Feyn}}(H)}$ . We study the kinematics of scale and angle-dependence to decompose G into subgroups ${G_{\mathrm{\makebox{1-s}}}}$ and ${G_{\mathrm{fin}}}$ . Using parametric representations of Feynman integrals, renormalizability and the renormalization group underlying the scale dependence of Feynman amplitudes are derived and proven in the context of algebraic geometry.  相似文献   

20.
Equilibrium between the ion exchange membrane and solutions of anions at various valences has been the subject of this investigation. Competitive ion exchange reactions were studied on a strong base anion exchange membrane AMX manufactured by Tokuyama, commercialized by Eurodia, involving Cl?, $ {\text NO}_3^{ - } $ and $ {\text SO}_4^{{2 - }} $ ions. Solution concentrations studied were 0.05 and 0.1 M for all the systems reported. Experiments were performed with sodium as the counter ion, and the temperature was kept constant (T?=?298 K). Ionic exchange isotherms for the binary systems— $ {{\text Cl}^{ - }}/{\text NO}_3^{ - } $ , $ {{\text Cl}^{ - }}/{\text SO}_4^{{2 - }} $ , and $ {\text NO}_3^{ - }/{\text SO}_4^{{2 - }} $ —were established. The obtained results show that the sulfate was the most strongly sorbed, and the selectivity order is $ {\text SO}_4^{{2 - }} > {\text NO}_3^{ - } > {{\text Cl}^{ - }} $ at 0.05 M and $ {\text NO}_3^{ - } > {\text SO}_4^{{2 - }} > {{\text Cl}^{ - }} $ at 0.1 M under the experimental conditions. Selectivity coefficients $ K_{{{{{\text Cl} }^{ - }}}}^{{{\text NO}_3^{ - }}} $ , $ K_{{2{{{\text Cl} }^{ - }}}}^{{{\text SO}_4^{{2 - }}}} $ , and $ K_{{2{\text NO}_3^{ - }}}^{{{\text SO}_4^{{2 - }}}} $ for the three binary systems were determined. All the results given by this membrane were compared with those obtained, in the same conditions, with the RPA membrane (produced by RHONE POULENC). Ternary equilibrium data were taken for $ {{\text Cl}^{ - }}/{\text NO}_3^{ - }/{\text SO}_4^{{2 - }} $ . The prediction of the ternary system based only on the binary data was consistent with the experimental data obtained for this system. The good agreement between the experimental and the predicted data showed that the proposed framework can be considered as an effective method to predict many ternary systems from binary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号