首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以氧化石墨烯(GO)作为DNA载体和荧光猝灭剂, SYBR Green Ⅰ(SGⅠ)为荧光信号探针, 发夹核酸探针为分子识别探针, 基于目标物启动的发夹核酸探针链置换循环反应, 建立了一种利用荧光共振能量转移和链置换循环放大技术检测端粒酶RNA(hTR)的荧光新方法. 发夹核酸探针hpDNA1和hpDNA2吸附在GO表面, 嵌插在发夹DNA探针茎部的SGⅠ的荧光信号被GO猝灭. 当人工合成的目标物(T1)存在时, T1与hpDNA1杂交打开hpDNA1的茎-环结构而引发hpDNA2与T1之间的链置换循环反应, 由此累积产生大量的hpDNA1/hpDNA2杂交双链. 刚性的双链DNA脱离GO表面, 导致所嵌插的SGⅠ产生较强的荧光信号. 基于荧光信号的变化, 可定量检测0.2~50 nmol/L的T1, 检出限为90 pmol/L. 该方法为端粒酶RNA检测提供了一种高灵敏、 高特异性且无需标记的荧光新途径.  相似文献   

2.
Monitoring gene expression in vivo is essential to the advancement of biological studies, medical diagnostics, and drug discovery. Adding to major efforts in developing molecular probes for mRNA monitoring, we have recently developed an alternative tool, the hybrid molecular probe (HMP). To optimize the probe, a series of experiments were performed to study the properties of HMP hybridization kinetics and stability. The results demonstrated the potential of the HMP as a prospective tool for use in both hybridization studies and in vitro and in vivo analyses. The HMP has shown no tendency to produce false positive signals, which is a major concern for living cell studies. Moreover, HMP has shown the ability to detect the mRNA expression of different genes inside single cells from both basal and stimulated genes. As an effective alternative to conventional molecular probes, the proven sensitivity, simplicity, and stability of HMPs show promise for their use in monitoring mRNA expression in living cells. Figure Hybrid molecular probe (HMP). HMPs consist of two single strands of DNA (green) and a polyethylene glycol (PEG, purple) linker that is used to tether these two sequences together. When a target (orange strand) containing the complementary sequences to both probes at adjacent positions is added, each strand binds to its corresponding target sequence, thus bringing the two fluorophores into close proximity, which allows energy transfer to occur  相似文献   

3.
Specifically amplifying the emission signals of optical probes in tumors is an effective way to improve the tumor-imaging sensitivity and contrast. In this paper, the first case of dendron-based fluorescence turn-on probes mediated by a Förster resonance energy transfer (FRET) mechanism is reported. Dendrons up to the fourth generation with a hydrophilic oligo(ethylene glycol) scaffold are synthesized by a solid-phase synthesis strategy, and show precise and defect-free chemical structures. To construct the fluorescence turn-on probe, one Cy5.5 molecule is conjugated to the focal of a G3 dendron through a robust linkage and eight Black Hole Quencher 3 (BHQ-3) molecules are conjugated to its periphery through a PEG chain bearing a reductively cleavable disulfide linkage. By in vitro and in vivo experiments, it is demonstrated that the fluorescence of the dendron-based probe can be activated effectively and rapidly in the reductive environments of tumor cells and tissues, and the probe thus exhibits amplified tumor signals and weak normal tissue signals. Compared with the reported nanoscale turn-on probes, the dendron-based probe has several significant advantages, such as well-defined chemical structure, precisely controllable fluorophore/quencher conjugation sites and ratio, desirable chemical stability, and reproducible pharmacokinetic and pharmacological profiles, and is very promising in tumor detection.  相似文献   

4.
As the most abundant transition metal element in mammals, iron(Fe) plays a vital role in life activities. It is of great significance to study the variation of Fe3+ level in living organisms. In virtue of the advantages of high sensitivity, good selectivity and low damage to living systems, the fluorescence detection of Fe3+ has attracted much attention. Compared with the intensity-based fluorescent probe, the ratiometric fluorescent probe has less interference of environmental and can realize quantitative detection. In this study, four ratiometric Fe3+ fluorescent probes, R1, R2, R3 and R4, were designed and synthesized using fluorescence resonance energy transfer(FRET) mechanism to achieve quantitative detection of Fe3+. In the FRET systems, 1,8-naphthalimide fluorophore derivatives were adopted as donors while rhodamine B derivatives were selected as receptors. The connection sites of the donor and acceptor in R3 and R4 are different from those in R1 and R2. All the four probes showed good response and selectivity to Fe3+. The energy transfer efficiencies of R3 and R4 were obviously higher than those of R1 and R2. This work provided a promising strategy for the development of fluorescent ratiometic Fe3+sensors.  相似文献   

5.
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single‐stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.  相似文献   

6.
A general strategy is reported for developing through-bond energy transfer (TBET) fluorescence probes by combining intramolecular charge transfer (ICT). The strategy uses a coplanar donor-π-bridge-acceptor system (SiOPh-PyOH) without spirolactam. The off-on switch of TBET and ICT is controlled by coplanar structure changes in the sensing process instead of spirolactam ring-opening in traditional TBET probes. DFT calculations showed that the energy and charge transfers from SiOPh to PyOH are prohibited. Since the SiOPh has no fluorescence, the probe SiOPh-PyOH shows fluorescence properties similar to that of pyrene. After sensing ONOO, the silyl ether is removed and the probe changes into OPh-PyO. Electron-donating ICT from OPh to PyO induces a large redshift of emission to 594 nm (179 nm shift). TBET from OPh to PyO ensures the probe exhibits a large pseudo-Stokes shift of 213 nm. Furthermore, the probe was successfully used in endogenous ONOO detection. This study offers a new strategy for the construction of TBET probes emitting in the red region without spirolactam ring-opening, a new ONOO sensing system using silyl ether as a reaction site, and a method for the deprotection of silyl ethers with ONOOH under mild conditions.  相似文献   

7.
构建了一种新型香豆素-萘酰亚胺荧光/电子顺磁共振双功能探针CNNOH,并结合荧光光谱、电子顺磁共振(EPR)波谱和紫外-可见吸收光谱对其性能进行了研究.结果表明,该探针可结合荧光光谱的灵敏性和EPR波谱的特异性进行次氯酸的检测;由于香豆素与萘酰亚胺之间存在荧光共振能量转移(FRET)效应,探针分子具有较大的Stokes位移(135 nm),可有效避免由激发光导致的杂散光对检测的干扰.该双功能探针具有检出限低(0.214μmol/L)、反应速度快(~10 s)、检测范围宽(0~5 mmol/L)、选择性好及在生理条件下稳定的特点,预期在活体细胞检测方面有良好的应用前景.  相似文献   

8.
孙伟  胡德禹  吴志兵  宋宝安  杨松 《有机化学》2011,31(7):997-1010
介绍了近五年来以罗丹明为母体的重金属和过渡金属阳离子荧光分子探针领域的研究进展.文中按照荧光团和识别基团之间连接臂的不同对国内外各研究组的工作进展进行归类总结,并对探针设计的思路、探针的性质和应用给出了简要介绍.  相似文献   

9.
In this work, a sensitive and selective detection method based on fluorescence resonance energy transfer (FRET) was developed for analyzing thiol compounds by using a novel fluorescent probe. The new fluorescent probe contains a disulfide bond which selectively reacts with nucleophilic thiolate through the thiol-disulfide exchange reaction. An obvious fluorescence recovery can be observed upon addition of the thiol compound in the fluorescent probe solution due to the thiol-disulfide exchange reaction and the destruction of FRET. This novel probe was successfully used to determine dithiothreitol (DTT), glutathione (GSH) and cysteine (Cys). The limits of detection (LOD) were 2.0 μM for DTT, 0.6 μM for GSH, and 0.8 μM for Cys. This new detection method was further investigated in the analysis of compound amino acid injection.  相似文献   

10.
阳雨虹  唐淳  顾新华 《化学通报》2016,79(9):856-859,875
生物大分子定点标记的荧光探针可以用来研究蛋白质的结构和功能,荧光探针良好的刚性和高连接特异性对于使用荧光共振能量转移(FRET)实验来解析生物大分子动态学特征来说有着重要的意义。本文报道两种花菁素类荧光探针IAM-Cyanine3和IAM-Cyanine5的合成方法,该探针通过碘乙酰胺基团特异性地标记在生物大分子的巯基上,相对于商业化的产品,其连接蛋白后的探针分布更加紧密,更有利于对生物大分子的结构和动态学进行更加精确的描述。  相似文献   

11.
This review provided a systematic overview of the recent researches on the small-molecule fluorescent probes for recognition various organic phosphate biomolecules (OPBs) including nucleotides, NAD(P)H, FAD/FMN and PS. The general strategies and the recognition mechanisms for these OPBs probe designs were described and emphasized to inspire the better design for fluorescent probes in the future.  相似文献   

12.
荧光共振能量转移技术在生物分析中的应用   总被引:18,自引:0,他引:18  
魏亦男  李元宗 《分析化学》1998,26(4):477-484
对荧光共振能量转移技术及其应用较全面的综述,介绍了Foerster原理,FRET实验技术,及其在生物大分子结构与功能研究,免疫分析和核酸杂交分析等几方面的应用,并对其将来的发展作出一些评价与展望。  相似文献   

13.
Organic phosphate biomolecules (OPBs) are indispensable components of eukaryotes and prokaryotes, such as acting as the fundamental components of cell membranes and important substrates for nucleic acids. They play pivotal roles in various biological processes, such as energy conservation, metabolism, and signal modulation. Due to the difficulty of detection caused by variety OPBs, investigation of their respective physiological effects in organisms has been restrained by the lack of efficient tools. Many small fluorescent probes have been employed for selective detection and monitoring of OPBs in vitro or in vivo due to the advantages of tailored properties, biodegradability and in situ high temporal and spatial resolution imaging. In this review, we summarize the recent advances in fluorescent probes for OPBs, such as nucleotides, NAD(P)H, FAD/FMN and PS. Importantly, we describe their identification mechanisms in detail and discuss the general strategies for these OPBs probe designs, which provide new insights and ideas for the future probe designs.  相似文献   

14.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   

15.
A rapid detection method for nucleic acid based on bioluminescence resonance energy transfer (BRET) from the luminescence donor Renilla luciferase to an acceptor quantum dot upon oligonucleotide probe hybridization has been developed. Utilizing a competitive assay, we detected the target nucleic acid by correlating the BRET signal with the amount of target present in the sample. This method allows for the detection of as little as 4 pmol (20 nM) of nucleic acid in a single-step, homogeneous format both in vitro in a buffer matrix as well as in a cellular matrix. Using this method, one may perform nucleic acid detection in as little as 30 min, showing much improvement over time-consuming blotting methods and solid-phase methods which require multiple wash steps to remove unbound probe. This is the first report on the use of quantum dots as a BRET acceptor in the development of a nucleic acid hybridization assay. An erratum to this article can be found at  相似文献   

16.
Molecular aptamers for real-time protein-protein interaction study   总被引:5,自引:0,他引:5  
Protein-protein interactions play critical roles in cellular functions, but current techniques for real-time study of these interactions are limited. We report the real-time monitoring of protein-protein interactions without labeling either of the two interacting proteins; this procedure poses minimum effects on the binding properties of the proteins. Our strategy uses a protein/aptamer complex to probe the interactions in a competitive assay where the binding of an aptamer to its target protein is altered by a second protein that interacts with the target protein. Two signal transduction strategies, fluorescence resonance energy transfer (FRET) and fluorescence anisotropy, have been designed to study the interactions of human alpha-thrombin with different proteins by using two aptamers specific for two binding sites on alpha-thrombin. Our method has been shown to be simple and effective, does not require labeling of proteins, makes use of easily obtainable aptamers, provides detailed protein-protein interaction information and has excellent sensitivity for protein detection and protein-protein interaction studies. The FRET and the fluorescent anisotropy approaches complement each other in providing insight into the kinetics, mechanisms, binding sites and binding dynamics of the interacting proteins.  相似文献   

17.
Resonance energy transfer from two-photon absorbing fluorene derivatives to the photochromic compound 3,4-bis-(2,4,5-trimethyl-thiophen-3-yl)furan-2,5-dione (PC 1) is investigated in hexane under one- and two-photon excitation. The quenching of the steady-state fluorescence of donor molecules in the presence of the diarylethene acceptor is used to study the nature of resonance energy transfer. The F?rster distances and critical acceptor concentrations are determined for nonbound donor-acceptor pairs in homogeneous molecular ensembles. Quite significantly, up to a two-fold enhancement in the velocity of the photochromic transformation of 1, in the presence of two-photon absorbing fluorene derivatives, is demonstrated.  相似文献   

18.
Double‐labeled oligonucleotide probes containing fluorophores interacting by energy‐transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2′‐O‐propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid‐phase copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy‐transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40–110 nm), quenched fluorescence of single‐stranded probes accompanied by up to 7.7‐fold light‐up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single‐nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM ).  相似文献   

19.
We have developed novel fluorescence probes for sodium cation based on photoinduced electron transfer (PeT). In this study, we rationally designed new probes and succeeded in achieving fluorescence enhancement upon sodium ion binding by reducing the HOMO energy level of the chelator group within the probe molecule. Our new probes show low pH dependency, possibly because of their simple structures. Our results confirm the value of rational probe design based on PeT.  相似文献   

20.
A multi-analyte biosensor based on nucleic acid hybridization and liposome signal amplification was developed for the rapid serotype-specific detection of Dengue virus. After RNA amplification, detection of Dengue virus specific serotypes can be accomplished using a single analysis within 25 min. The multi-analyte biosensor is based on single-analyte assays (see Baeumner et al (2002) Anal Chem 74:1442–1448) developed earlier in which four analyses were required for specific serotype identification of Dengue virus samples. The multi-analyte biosensor employs generic and serotype-specific DNA probes, which hybridize with Dengue RNA that is amplified by the isothermal nucleic acid sequence based amplification (NASBA) reaction. The generic probe (reporter probe) is coupled to dye-entrapping liposomes and can hybridize to all four Dengue serotypes, while the serotype-specific probes (capture probes) are immobilized through biotin–streptavidin interaction on the surface of a polyethersulfone membrane strip in separate locations. A mixture of amplified Dengue virus RNA sequences and liposomes is applied to the membrane and allowed to migrate up along the test strip. After the liposome-target sequence complexes hybridize to the specific probes immobilized in the capture zones of the membrane strip, the Dengue serotype present in the sample can be determined. The amount of liposomes immobilized in the various capture zones directly correlates to the amount of viral RNA in the sample and can be quantified by a portable reflectometer. The specific arrangement of the capture zones and the use of unlabeled oligonucleotides (cold probes) enabled us to dramatically reduce the cross-reactivity of Dengue virus serotypes. Therefore, a single biosensor can be used to detect the exact Dengue serotype present in the sample. In addition, the biosensor can simultaneously detect two serotypes and so it is useful for the identification of possible concurrent infections found in clinical samples. The various biosensor components have been optimized with respect to specificity and sensitivity, and the system has been ultimately tested using blind coded samples. The biosensor demonstrated 92% reliability in Dengue serotype determination. Following isothermal amplification of the target sequences, the biosensor had a detection limit of 50 RNA molecules for serotype 2, 500 RNA molecules for serotypes 3 and 4, and 50,000 molecules for serotype 1. The multi-analyte biosensor is portable, inexpensive, and very easy to use and represents an alternative to current detection methods coupled with nucleic acid amplification reactions such as electrochemiluminescence, or those based on more expensive and time consuming methods such as ELISA or tissue culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号