首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alpha-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein-protein and protein-nucleic acid interactions. Strategies for the rational design and synthesis of alpha-helix mimetics have not matured as well as other secondary structure mimetics such as strands and turns. This perspective will focus on developments in the design, synthesis and applications of alpha-helices and mimetics, particularly in the last 5 years. Examples where synthetic compounds have delivered promising biological results will be highlighted as well as opportunities for the design of mimetics of the type I alpha-helical antifreeze proteins.  相似文献   

2.
A chemical library of 1,2,3-triazole fused carbohydrate mimetics was constructed. To synthesize enantiomerically pure mimetics, we developed a stereo- or diastereodivergent synthetic route from D-glucose, D-mannose and D-galactose as chiral sources. In this synthesis, an In(OTf)(3)-catalyzed tandem azidation-1,3-dipolar cycloaddition reaction of 1,1-dimethoxyhex-5-yne derivatives with TMSN(3) was used as the key step to construct the 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine framework. Additionally, NMR was used to carry out a conformational analysis of the synthesized mimetics, which are of structural interest since they have an N,O-acetal moiety in place of the anomeric position of normal pyranosides.  相似文献   

3.
One of the most common protein–protein interactions (PPI) is the interaction of the α‐helix of one protein with the surface of the second one. Terphenylic scaffolds are bioinspired motifs in the inhibition of PPIs and have been identified as suitable α‐helix mimetics. One of the challenging aspects of this strategy is the poor solubility of terphenyls under physiological conditions. In the literature pyrrolopyrimidine‐, pyrimidine‐ or pyridazine‐based mimetics have been reported to show improved solubility. We present a new convergent strategy for the synthesis of linear pyridine‐type teraryls based on a phenylic core unit. A general approach for the synthesis of 3,5‐disubstituted pyridine‐based boronic acid pinacol esters with amino acid side chains in the 3‐position (representing Phe, Leu, Ile, Lys, Asp, Asn) is presented and exploits the functional group tolerance of the Knochel–Grignard reagents. The building blocks have been used in a convergent in situ two‐step synthesis of teraryl α‐helix mimetics.  相似文献   

4.
Solid-phase peptide synthesis in the N-to-C direction, opposite to the classical C-to-N direction of peptide synthesis, provides the synthetically versatile C-terminal carboxyl group for further modification into C-terminally modified peptide mimetics. These are of general interest as potential bioactive agents, particularly as protease inhibitors. Elaboration of peptide mimetics on the solid-phase would facilitate synthesis of peptide mimetic combinatorial libraries. This report describes an effective strategy for solid-phase inverse peptide synthesis based on readily available amino acid tert-butyl esters. The potential of this approach for peptide mimetic synthesis is demonstrated by the solid-phase synthesis of two peptide trifluoromethylketones.  相似文献   

5.
ShK toxin is a structurally defined, 35-residue polypeptide which blocks the voltage-gated Kv1.3 potassium channel in T-lymphocytes and has been identified as a possible immunosuppressant. Our interest lies in the rational design and synthesis of type-III mimetics of protein and polypeptide structure and function. ShK toxin is a challenging target for mimetic design as its binding epitope consists of relatively weakly binding residues, some of which are discontinuous. We discuss here our investigations into the design and synthesis of 1st generation, small molecule mimetics of ShK toxin and highlight any principles relevant to the generic design of type-III mimetics of continuous and discontinuous binding epitopes. We complement our approach with attempted pharmacophore-based database mining.  相似文献   

6.
Peptide mimetics are of considerable interest as bioactive agents and drugs. C-terminally modified peptide mimetics are of particular interest given the synthetic versatility of the carboxyl group and its derivatives. A general approach to C-terminally modified peptide mimetics, based on a urethane attachment strategy and amino acid t-butyl ester-based N-to-C peptide synthesis, is described. This approach is compatible with the reaction conditions generally employed for solution-phase peptide mimetic synthesis. To develop and demonstrate this approach, it was employed for the solid-phase synthesis of peptide trifluoromethyl ketones, peptide boronic acids, and peptide hydroxamic acids. The development of a versatile general approach to C-terminally modified peptides using readily available starting materials provides a basis for the combinatorial and parallel solid-phase synthesis of these peptide mimetic classes for bioactive agent screening and also provides a basis for the further development of solid-phase C-terminal functional group elaboration strategies.  相似文献   

7.
Reported here is an easy and short synthesis of 6-acetamido-5-oxo-1,2,3,5,6,7-hexahydro-3-indolizine-carboxylic acid, originating from β-enaminoesters derived from pyroglutamic acid. This key compound has been used as a scaffold in the synthesis of dipeptido mimetics.  相似文献   

8.
There is considerable interest in developing non-peptidic, small-molecule α-helix mimetics to disrupt α-helix-mediated protein?protein interactions. Herein, we report the design of a novel pyrrolopyrimidine-based scaffold for such α-helix mimetics with increased conformational rigidity. We also developed a facile solid-phase synthetic route that is amenable to divergent synthesis of a large library. Using a fluorescence polarization-based assay, we identified cell-permeable, dual MDMX/MDM2 inhibitors, demonstrating that the designed molecules can act as α-helix mimetics.  相似文献   

9.
Ring-closing metathesis (RCM) was employed to join carboxy-terminal alkenyl glycine side chains together with vinyl- and allyl-functionality appended to the beta-methylene of amino-terminal phosphotyrosyl (pTyr) mimetics. This required the synthesis of a variety of new pTyr mimetics, including a novel aza-containing analogue. Many of the resulting 15-member macrocyclic tetrapeptide mimetics exhibited low nanomolar Grb2 SH2 domain-binding affinities in spite of the fact that differing ring junction stereochemistries and geometries of the RCM-derived double bond were employed. The finding that significant latitude exists in the structural requirements for ring closure may facilitate the development of therapeutically relevant macrocyle-based Grb2 SH2 domain-binding antagonists. The synthetic approaches used in this study may also find application to peptide mimetics directed at other biological targets.  相似文献   

10.
Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein–protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd‐catalyzed cross‐coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported.  相似文献   

11.
In this contribution we describe a general synthesis concept for the in situ preparation of protease specific reactants using methyl thioesters as universal precursors. The precursor esters are readily available by standard synthesis procedures and can be used directly as reactants for protease-mediated peptide coupling reactions. Alternatively, they can serve as initial building blocks for the in situ preparation of various types of substrate mimetics. The synthesis of the latter is achieved by a one-pot spontaneous transthioesterification reaction of the parent thioester (Y-(Xaa)(n)-SMe-->Y-(Xaa)(n)-SR; R: CH(2)CH(2)COOH, CH(2)C(6)H(5), C(6)H(4)NHC(:NH)NH(2)), which proceeds efficiently in both a sequential manner and parallel to the subsequent enzymatic reaction. The resulting substrate mimetics act as efficient acyl donor components and show the typical behavior of substrate mimicry enabling irreversible reactions with originally nonspecific acyl moieties. Neither a workup of the substrate mimetic intermediate nor changes of the reaction conditions during the whole synthesis process are required. Model peptide syntheses using trypsin, alpha-chymotrypsin, and V8 protease as the biocatalysts proved the function of the approach and illustrated its synthetic value for protease-mediated reactions and the compatibility of the approach with state-of-the-art solid-phase peptide ester synthesis methods.  相似文献   

12.
The scalable, divergent synthesis of all four monomers required for the preparation of sulfonamide-based RNA mimetics is described. Such mimetics may combine excellent mimicry of the parent RNA with enhanced (bio)chemical robustness and convenient oligomerization. As a proof of principle, a dimer resulting from the monomers is described.  相似文献   

13.
《Tetrahedron: Asymmetry》2005,16(8):1425-1434
An approach towards the synthesis of novel sialyl nucleoside mimetics based on d-fructose is described. The synthesis of these mimetics is achieved in good overall yield in seven steps. The key synthetic step is the coupling reaction of pyrimidine bases (uracil, 5-fluorouracil and cytosine) to the C-1 position of the modified d-tagatofructofuranoside.  相似文献   

14.
A successful structure-based design and synthesis of a class of highly potent conformationally constrained Smac mimetics is described. The most potent compound has a Ki value of 25 nM binding to the XIAP BIR3 protein and is 23 times more potent than natural Smac peptides. These potent Smac mimetics can serve as powerful chemical and pharmacological tools to further elucidate the role of Smac and its cellular binding partners in apoptosis regulation and may be developed as a new class of anti-cancer drugs.  相似文献   

15.
Combinatorial diversity in hypervariable β‐hairpin loops is exploited by the immune system to select binding sites on antibodies for a wide variety of different protein antigens. In a first step towards mimicking this strategy in vitro, for the selection of novel protein ligands, an approach is described here for the parallel synthesis of small libraries of conformationally defined β‐hairpin protein epitope mimetics. Starting from a protruding hairpin loop in platelet‐derived growth factor B (PDGF‐B), 8 and 12 residues were first transplanted from the protein to a D ‐Pro‐L ‐Pro template, to afford the cyclic peptide‐loop mimetics 1 and 2 , respectively. NMR and MD studies in aqueous solution show that both mimetics populate conformations which closely mimic the β‐hairpin in the crystal structure of the native protein (Fig. 5). Based on 1 as a scaffold, a library of 24 mimetics was synthesized in which the four residues at the tip of the loop (VRKK) were held constant, and flanking residues at positions 1, 2, 7, and 8 in the hairpin were varied (Fig. 7). The library was prepared by parallel synthesis in a two‐stage solid‐phase assembly/solution‐phase cyclization process. The products were analyzed by MS, NMR, and CD. 2D‐NOESY revealed for most library members characteristic long‐range NOEs that show that the hairpin conformation is stably maintained. The results suggest that this approach may be useful for the synthesis of much larger libraries of peptide and protein mimetics based on a β‐hairpin scaffold.  相似文献   

16.
This article reviews the latest developments in protease-catalyzed peptide synthesis focusing on the use of substrate mimetics. The substrate mimetics approach takes advantage of the characteristic of this novel type of substrates to direct the enzyme to recognize an alternative site on the acyl donor, i.e. the site-specific ester leaving group, mediating the acceptance of originally poorly reactive acyl moieties. At first the kinetics and catalytic mechanism of substrate mimetics-mediated reactions are discussed on the basis of hydrolysis, peptide synthesis, protein-ligand docking, and molecular dynamics studies. By the example of the Glu-specific V8 protease and the aromatic amino acid-specific chymotrypsin both the empirical and computer-aided design of specific substrate mimetics is described. The influence of the leaving group specifically recognized by the enzyme is also considered. The benefits of these artificial substrates over common acyl donor components are illustrated by selected synthesis reactions of small peptides, peptide isosteres, non-peptidic carboxylic acid amides, and the coupling of peptide fragments at non-specific ligation sites resulting in biologically active peptide products. Finally, this review focuses on critical syntheses that uses specific-amino acid-containing peptides as the reactants of ligation. Based on these, the restrictions of the substrate mimetics approach is critically discussed and techniques to their overcoming are presented.  相似文献   

17.
γ-Ketophosphonates are commonly employed as non-hydrolysable phosphate mimetics and as tools in synthesis. The synthesis of γ-ketophosphonates under mild conditions via interception of acyl radicals generated by aldehyde auto-oxidation is described.  相似文献   

18.
Phosphonate and phosphonamidate peptides are phosphorus analogues of natural peptides. They have been great used as stable mimetics of tetrahedral transition states as enzyme inhibitors and as haptens for catalytic antibody research in recent years. Although several methods are available for the preparation of phosphonate peptides and phosphonamidate peptides, all of them use phosphonic acid derivatives as starting materials. The overall yields from the synthesis of phosphonic acid derivatives to desired peptides are not satisfactory in most cases.  相似文献   

19.
Amino acids are fundamental building blocks, which have been extensively used in drug design and organic synthesis. However, nonnatural amino acids are relatively less studied. In this work, the authors report the first HFIP-promoted de novo synthesis of nonnatural α-arylated amino esters and dipeptide mimetics (27 examples, up to 99 % yield) from readily available amines, ethyl glyoxylate and electron-rich arenes under mild conditions, in which one C−C bond, one C−N bond and one chiral center were established simultaneously. The reaction was also performed on a gram scale, giving compound 4 a in 96 % yield. In addition, this protocol was successfully applied to the late-stage elaboration of drug molecules, such as tranylcypromine (TCP or PCPA) and troxipide. Interestingly, compound 4 h inactivated histone lysine specific demethylase 1 (LSD1) potently with an IC50 value of 0.296 μm . To the best of our knowledge, compound 4 h is the first LSD1 inhibitor derived from nonnatural α-arylated amino esters, and therefore could be used as a hit compound for the development of new LSD1 inhibitors. The synthesized nonnatural α-arylated amino esters and dipeptide mimetics as unique building blocks may have potential synthetic utilities.  相似文献   

20.
《Tetrahedron: Asymmetry》2006,17(15):2235-2239
An improved synthesis of 3-azido-4-hydroxy cyclopentanoic acid 2 is presented. This molecule is useful as a synthetic scaffold for β-turn mimetics on solid phase, with the selectivity of the turns being dependent on the diastereomer employed. A high diastereoselectivity in the synthesis of this molecule in solution is reported, which may then be attached to the solid phase for the synthesis of peptidomimetic libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号