首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycles through specified vertices of a graph   总被引:1,自引:0,他引:1  
We prove that ifS is a set ofk−1 vertices in ak-connected graphG, then the cycles throughS generate the cycle space ofG. Moreover, whenk≧3, each cycle ofG can be expressed as the sum of an odd number of cycles throughS. On the other hand, ifS is a set ofk vertices, these conclusions do not necessarily hold, and we characterize the exceptional cases. As corollaries, we establish the existence of odd and even cycles through specified vertices and deduce the existence of long odd and even cycles in graphs of high connectivity.  相似文献   

2.
Recently, various authors have obtained results about the existence of long cycles in graphs with a given minimum degreed. We extend these results to the case where only some of the vertices are known to have degree at leastd, and we want to find a cycle through as many of these vertices as possible. IfG is a graph onn vertices andW is a set ofw vertices of degree at leastd, we prove that there is a cycle through at least vertices ofW. We also find the extremal graphs for this property.Research supported in part by NSF Grant DMS 8806097  相似文献   

3.
A necessary and sufficient condition is obtained for a set of 12 vertices in any 3-connected cubic graph to lie on a common cycle.  相似文献   

4.
We give a simple proof that everyk-connected bipartite tournament has a cycle through every set ofk vertices. This was conjectured in [4].This research was done while the first author was visiting Laboratoire de Recherche en Informatique, universite Paris-Sud whose hospitality and financial support is gratefully acknowledged  相似文献   

5.
Cunningham and Edmonds [4[ have proved that a 2-connected graphG has a unique minimal decomposition into graphs, each of which is either 3-connected, a bond or a polygon. They define the notion of a good split, and first prove thatG has a unique minimal decomposition into graphs, none of which has a good split, and second prove that the graphs that do not have a good split are precisely 3-connected graphs, bonds and polygons. This paper provides an analogue of the first result above for 3-connected graphs, and an analogue of the second for minimally 3-connected graphs. Following the basic strategy of Cunningham and Edmonds, an appropriate notion of good split is defined. The first main result is that ifG is a 3-connected graph, thenG has a unique minimal decomposition into graphs, none of which has a good split. The second main result is that the minimally 3-connected graphs that do not have a good split are precisely cyclically 4-connected graphs, twirls (K 3,n for somen3) and wheels. From this it is shown that ifG is a minimally 3-connected graph, thenG has a unique minimal decomposition into graphs, each of which is either cyclically 4-connected, a twirl or a wheel.Research partially supported by Office of Naval Research Grant N00014-86-K-0689 at Purdue University.  相似文献   

6.
S.C. Locke proposed a question: If G is a 3-connected graph with minimum degree d and X is a set of 4 vertices on a cycle in G, must G have a cycle through X with length at least min{2d,|V(G)|}? In this paper, we answer this question.  相似文献   

7.
We prove that a 3-connected cubic graph contains a cycle through any nine points.  相似文献   

8.
Cycles in weighted graphs   总被引:2,自引:0,他引:2  
A weighted graph is one in which each edgee is assigned a nonnegative numberw(e), called the weight ofe. The weightw(G) of a weighted graphG is the sum of the weights of its edges. In this paper, we prove, as conjectured in [2], that every 2-edge-connected weighted graph onn vertices contains a cycle of weight at least 2w(G)/(n–1). Furthermore, we completely characterize the 2-edge-connected weighted graphs onn vertices that contain no cycle of weight more than 2w(G)/(n–1). This generalizes, to weighted graphs, a classical result of Erds and Gallai [4].  相似文献   

9.
We give necessary and sufficient conditions for four edges in a 3-connected cubic graph to lie on a cycle. As a consequence, if such a graph is cyclically 4-edge-connected with order greater than 8 it is shown that any four independent edges lie on a cycle.  相似文献   

10.
Let Gbe a 2-connected graph with minimum degree d and let {x, y, z} be a set of three vertices contained on some cycle ofG. ThenG ishamiltonian or {x, y, z} is contained on a cycle of length at least 2d inG.  相似文献   

11.
Given five edges in a 3-connected cubic graph there are obvious reasons why there may not be one cycle passing through all of them. For instance, an odd subset of the edges may form a cutset of the graph. By restricting the sets of five edges in a natural way we are able to give necessary and sufficient conditions for the set to be a subset of edges of some cycle. It follows as a corollary that, under suitable restrictions, any five edges of a cyclically 5-edge connected cubic graph lie on a cycle.  相似文献   

12.
It is shown that a 3-skein isomorphism between 3-connected graphs with at least 5 vertices is induced by an isomorphism. These graphs have no loops but may be infinite and have multiple edges.  相似文献   

13.
We answer a question of Erdős [1], [2] by showing that any graph of uncountable chromatic number contains an edge through which there are cycles of all (but finitely many) lengths.  相似文献   

14.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

15.
A cubic graph which is cyclicallyk-edge connected and has the further property that every edge belongs to some cyclick-edge cut is called uniformly cyclicallyk-edge connected(U(k)). We classify theU(5) graphs and show that all cyclically 5-edge connected cubic graphs can be generated from a small finite set ofU(5) graphs by a sequence of defined operations.MATHDAHCOTAGE.AC.NZ  相似文献   

16.
It is an interesting problem that how much connectivity ensures the existence ofn disjoint paths joining givenn pairs of vertices, but to get a sharp bound seems to be very difficult. In this paper, we study how muchgeodetic connectivity ensures the existence ofn disjointgeodesics joining givenn pairs of vertices, where a graph is calledk-geodetically connected if the removal of anyk−1 vertices does not change the distance between any remaining vertices.  相似文献   

17.
Highly linked graphs   总被引:6,自引:0,他引:6  
A graph with at least 2k vertices is said to bek-linked if, for any choices 1,...,s k ,t 1,...,t k of 2k distinct vertices there are vertex disjoint pathsP 1,...,P k withP i joinings i tot i , 1ik. Recently Robertson and Seymour [16] showed that a graphG isk-linked provided its vertex connectivityk(G) exceeds . We show here thatk(G)22k will do.  相似文献   

18.
On reorienting graphs by pushing down maximal vertices   总被引:1,自引:0,他引:1  
Oliver Pretzel 《Order》1986,3(2):135-153
We study the operation of pushing down elements in the diagram of a finite ordered set. Two natural questions about this operation are, ‘Which orientations of the underlying graph can be obtained from a given orientation by pushing down?’ and ‘Which sets of vertices can become the sets of maximal elements in such orientations?’. For both questions thére are easy necessary conditions. We show that these conditions are also sufficient. The results are extended to cover all induced subgraphs and arbitrary orientations of a finite graph.  相似文献   

19.
Summary A variety of examples of 4-connected 4-regular graphs with no pair of disjoint Hamiltonian circuits were constructed in response to Nash-Williams conjecture that every 4-connected 4-regular graph is Hamiltonian and also admits a pair of edge-disjoint Hamiltonian circuits. Nash-Williams's problem is especially interesting for planar graphs since 4-connected planar graphs are Hamiltonian. Examples of 4-connected 4-regular planar graphs in which every pair of Hamiltonian circuits have edges in common are included in the above mentioned examples.B. Grünbaum asked whether 5-connected planar graphs always admit a pair of disjoint Hamiltonian circuits. In this paper we introduce a technique that enables us to construct infinitely many examples of 5-connected planar graphs, 5-regular and non regular, in which every pair of Hamiltonian circuits have edges in common.  相似文献   

20.
L. Allys 《Combinatorica》1994,14(3):247-262
Isotropic systems are structures which unify some properties of 4-regular graphs and selfdual properties of binary matroids, such as connectivity and minors. In this paper, we find the minimally 3-connected isotropic systems. This result implies the binary part Tutte's wheels and whirls theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号