首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 We performed Monte Carlo simulations to study the destabilization processes of large neutral and flexible polymer chains due to irreversibly adsorbed colloidal particles attached to the chains like beads on a necklace. The particles are modeled as charged spherical units which interact with each other via repulsive electrostatic and attractive van der Waals (vdW) potentials. The usual Monte Carlo search procedure is extended and carefully checked to completely sample the chain conformational space and achieve dense conformations in the limit of both strong attractive and repulsive interaction potentials. Configurational properties, such as the radius of gyration, the end-to-end length, and the Kuhn length, are calculated as a function of the intensity of the vdW interactions and ionic strength values. It is observed that chains exhibit a new range of possible conformations compared to the classical random walk and self avoiding walk chains or polyelectrolytes. In the limit of low salt concentration, by gradually increasing vdW interactions, chains undergo a cascade of transitions from extended structures to dumbbells, from dumbbells to pearl necklaces, and from pearl necklaces to collapsed coils. Because of strong competition between the vdW and electrostatic forces, the distance along the chain between the interacting particles, and the sampling limitations, these transitions are found to sample metastable domains and to depend on the initial conformations. To gain insight into the spatial organization of the collapsed conformations, the pair correlation functions of both monomers and particles are calculated. It is shown that collapsed conformations which are the result of strong particle–particle interactions exhibit two distinct parts: a hard core mainly composed of particles and a surrounding polymeric shell composed of loops and tails. Possible effects of such a collapsed transition on the kinetics of flocculation of a mixture containing large flexible chains and small adsorbing colloidal particles are discussed. Received: 26 July 1999 Accepted in revised form: 9 November 1999  相似文献   

2.
The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables.  相似文献   

3.
Kinetics of hydrogen oxidation near the lower explosion limit in the kinetic region of chain termination has been studied. Major effects, causing deviations of the reaction kinetics from calculations by the linear theory of branched chain processes, are shown to be (1) the inhibition of the reacting mixture by the products of interaction of active centers with vacuum grease or with impurities contained in it and (2) the heterogeneous negative interaction of reaction active centers. The kinetics of hydrogen oxidation in this region has been calculated with consideration of the heterogeneous negative chain interaction. A set of parameters has been obtained that make it possible to determine by the shape of the kinetic curves the sign and the value of nonlinear interaction of chains near the lower explosion limit. It has been shown that the experimental data are in good agreement with the calculations, provided the heterogeneous negative chain interaction is taken into consideration and the inhibiting effect of impurities is eliminated. The rate of heterogeneous generation of chains on a quartz surface treated with hydrofluoric or boric acid has been determined.  相似文献   

4.
Tetrathiafulvalene (TTF) derivative substituted with two butyl- and two dodecylthiol chains is adsorbed on polycrystalline gold. The TTF-derived thiol adsorbates were characterized by ellipsometry, contact angle goniometry, infrared and X-ray photoelectron spectroscopy and cyclic voltammetry. The molecule is strongly anchored on the gold surface through the sulfur terminating the alkylthiol chains. On the average, the TTF moiety is oriented extended away from the gold surface. The topmost layer of the film containing the dibutyl chains is disordered with gauche defects. The molecule was organized with majority of the alkylthiol chains bound to the gold surface. There are indications of pinholes in the monolayer due to steric hindrance of the bulky TTF rings. The molecular systems consisting of an electroactive pi-system such as TTF, are promising for thin-film field effect transistor application.  相似文献   

5.
Hartree–Fock crystal orbital calculations of two crystalline organic iodides, tetrathiafulvalenium triiodide (TTF∗︁I3) and dipyridinium decaiodide (NHC5H5)2∗︁I10, were carried out. The former crystal contains no true polyiodide chains, whereas such chains are present in the latter crystal. In such a way, the effect of the polyiodide chain formation on the electronic structure of crystalline organic iodides was studied. The present calculations show that crystalline organic iodides with polyiodide chains could, in principle, be quasi-one-dimensional semiconductors. A polyiodide chain could be a carrier of semiconductivity only when it is formed by fully charged iodide anions (no charge transfer from the chain). © 1997 John Wiley & Sons, Inc. Int J Quant Chem 64 : 473–479, 1997  相似文献   

6.
A theoretical study of the potential energy surface and bound states is performed for the ground state of the NeI(2) van der Waals (vdW) complex. The three-dimensional interaction energies are obtained from ab initio coupled-cluster, coupled-cluster single double (triple)/complete basis set, calculations using large basis sets, of quadruple- through quintuple-zeta quality, in conjunction with relativistic effective core potentials for the heavy iodine atoms. For the analytical representation of the surface two different schemes, based on fitting and interpolation surface generation techniques, are employed. The surface shows a double-minimum topology for linear and T-shaped configurations. Full variational quantum mechanical calculations are carried out using the model surfaces, and the vibrationally averaged structures and energetics for the NeI(2) isomers are determined. The accuracy of the potential energy surfaces is validated by a comparison between the present results and the corresponding experimental data available. In lieu of more experimental measurements, we also report our results/predictions on higher bound vibrational vdW levels, and the influence of the employed surface on them is discussed.  相似文献   

7.
Electroactive tetrathiafulvalene (TTF)-containing alkanethiol self-assembled monolayers (SAMs) were designed and synthesized to elucidate the relationship between electrochemical responses and film structures. Two TTF derivative molecules having one alkanethiol chain (1) and two alkanethiol chains (2) were utilized to modulate the molecular packing arrangements in the SAMs, and the formation and structure of the SAMs were characterized by surface plasmon resonance spectroscopy (SPR). SPR measurements in various contacting media demonstrated loose packing of SAM 1 and close packing of SAM 2 due to the different space fillings of the molecules. Two successive one-electron redox waves were observed for both SAMs by cyclic voltammetry. The peak widths of the redox waves were strongly dependent on the oxidation states of the TTF moieties, the packing arrangement of the SAMs, and the contacting medium. We found that TTF-based SAMs exhibited collective electrochemical responses induced by dynamic structural changes, depending on the degree of freedom for the component molecules in the SAMs. These results imply that the molecular design, taking into account the electrochemical responses, extends the available range of molecular-based functionalities in TTF-based SAMs.  相似文献   

8.
The ab initio three-dimensional potential energy surface (PES) for the weak interaction of hydrogen molecule with bromine anion is presented. The surface was obtained by the supermolecular method at the coupled cluster with single and double excitations and noniterative correction to triple excitations (CCSD(T)) level of theory. Our calculations indicate the van der Waals (vdW) system for the linear orientation at R=3.37 A with a well depth of D(e)=660.1 cm(-1). The presented PES reveals also transition state for the perpendicular orientation at R=4.22 A with a barrier of 607.1 cm(-1). The physical origin of the stability of vdW H(2) ... Br(-) structure with respect to the H(2) ... Cl(-) one was analyzed by the symmetry adapted perturbation theory based on the single determinant Hartree-Fock (HF) wave function. The separation of the interaction energy shows that the dispersion forces play slightly more important role in the stabilization of the vdW system with Br(-) than with Cl(-).  相似文献   

9.
10.
Two effects of interactions between polarizable ions and polarizable walls in electric double layers are investigated: ionic image charge forces and ion-wall dispersion forces. The first must be included for a consistent treatment of the wall-wall van der Waals (vdW) interaction, since it contains the effect of screening of the static part of the vdW interaction. The second has been suggested to give rise to ion specificity in double layer interactions. The strength of the ion-wall dispersion forces are estimated from quantum mechanical calculations of ionic polarizability and from experimental data for the dielectric functions of the media. The ion density profiles and the anisotropic ion-ion distribution functions in the double layer are calculated in the highly accurate anisotropic hypernetted chain approximation, which allows the correct treatment of the image charge forces. The double layer interactions are evaluated from these distribution functions. It is found that it is important to include both kinds of ion-wall forces. Quantitative and sometimes even qualitative differences occur in the double layer interactions depending on the ionic species of the electrolyte due to different strengths of the ion-wall dispersion interactions.  相似文献   

11.
Reaction of 2,4,6‐trichloro‐1,3,5‐triazine with lithiated tetrathiafulvalene (TTF) in stoichiometric conditions, followed by treatment with sodium methanolate, provides mono‐ and bis(TTF)–triazines as new covalently linked (multi)donor–acceptor systems. Single‐crystal X‐ray analyses reveal planar structures for both compounds, with formation of peculiar segregated donor and acceptor stacks for the mono(TTF)–triazine compound, while mixed TTF–triazine stacks establish in the case of the bis(TTF) derivative. Cyclic voltammetry measurements show reversible oxidation of the TTF units, at rather low potential, with no splitting of the oxidation waves in the case of the dimeric TTF, whereas irreversible reduction of the triazine core is observed. Intramolecular charge transfer is experimentally evidenced through solution electronic absorption spectroscopy. Time‐dependent DFT calculations allow the assignment of the charge transfer band to singlet transitions from the HOMO of the donor(s) to the LUMO of the acceptor. Solution EPR measurements correlated with theoretical calculations were performed in order to characterize the oxidized species. In both cases the spectra show very stable radical species and contain a triplet of doublet pattern, in agreement with the coupling of the unpaired electron with the three TTF protons. The dication of the bis(TTF)–triazine is paramagnetic, but no spin–spin exchange interaction could be detected.  相似文献   

12.
The electronic structures of self-assembled hybrid chains comprising Ag atoms and organic molecules were studied using scanning tunneling microscopy (STM) and spectroscopy (STS) in parallel with density functional theory (DFT). Hybrid chains were prepared by catalytic breaking of Br-C bonds in 4,4″-dibromo-p-terphenyl molecules, followed by spontaneous formation of Ag-C bonds on Ag(111). An atomic model was proposed for the observed hybrid chain structures. Four electronic states were resolved using STS measurements, and strong energy dependence was observed in STM images. These results were explained using first-principles calculations based on DFT.  相似文献   

13.
van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C?(K)/C?(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C? ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C? ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C? values that depends more strongly on the permittivity of the surface.  相似文献   

14.
The aim of this work is to develop spherically symmetric effective potentials allowing bulk thermodynamic properties and surface tension of molecular fluids to be predicted semiempirically by the use of statistical mechanical methods. Application is made to the straight chain alkane fluids from methane to decane. An effective Lennard-Jones potential is generated with temperature-dependent parameters fitted to the critical temperature and pressure and to Pitzer's acentric factor. Insertion of this potential into the generalised van der Waals (GvdW) density functional theory yields bulk properties in good agreement with experiments. The surface tension is overestimated for the longer alkane chains. In order to account for the surface tension, an independently adjustable attractive range of interaction is required and obtained through the use of square-well potentials chosen so as to leave the bulk thermodynamics unaltered while the attractive range is fitted to the surface tension at a single temperature. The GvdW theory, which includes binding energy, entropic and profile shape contributions, then generates surface tension estimates that are of good accuracy over the full range of available experimental data. It appears that, given a sufficiently flexible form, effective potentials combined with simple statistical mechanical theory can reproduce both bulk and non-uniform fluid data of great variety in an insighful and practically useful way.  相似文献   

15.
The mechanism of the formation of Si-C bonded monolayers on silicon by reaction of 1-alkenes with hydrogen-terminated porous silicon surfaces has been studied by both experimental and computational means. We propose that monolayer formation occurs via the same radical chain process as at single-crystal surfaces: a silyl radical attacks the 1-alkene to form both the Si-C bond and a radical center on the beta-carbon atom. This carbon radical may then abstract a hydrogen atom from a neighboring Si-H bond to propagate the chain. Highly deuterated porous silicon and FTIR spectroscopy were used to provide evidence for this mechanism by identifying the IR bands associated with the C-D bond formed in the proposed propagation step. Deuterated porous silicon surfaces formed by galvanostatic etching in 48% DF/D2O:EtOD (1:1) electrolytes showed a 30% greater density of Si-D sites on the surface than Si-H sites on hydrogen-terminated porous silicon surfaces prepared in the equivalent H-electrolyte. The thermal reaction of undec-1-ene and the Lewis acid catalyzed reaction of styrene on a deuterated surface both resulted in alkylated surfaces with the same C-C and C-H vibrational features as formed in the corresponding reactions at a hydrogen-terminated surface. However, a broad band around 2100 cm(-1) was observed upon alkylating the deuterated surfaces. Ab initio and density functional theory calculations on small molecule models showed that the integrated absorbance of this band was comparable to the intensity expected for the C-D stretches predicted by the chain mechanism. The calculations also indicate that there is substantial interaction between the hydrogen atoms on the beta-carbons and the hydrogen atoms on the Si(111)-H surface. These broad 2100 cm(-1) features are therefore assigned to C-D bands arising from the involvement of surface D atoms in the hydrosilylation reactions, while the line broadening can be explained partly by interaction with neighboring surface atoms/groups.  相似文献   

16.
Lennard-Jones (LJ) parameters are derived for classical nonpolarizable force fields for carbon nanotubes (CNTs) and for CNT-water interaction from van der Waals (vdW) enhanced density functional calculations. The new LJ parameters for carbon-carbon interactions are of the same order as those previously used in the literature but differ significantly for CNT-water interactions. This may partially originate from the fact that in addition to pure vdW interactions the polarization and other quantum mechanics effects are embedded into the LJ-potential.  相似文献   

17.
A statistical mechanical model that treats hydrocarbon self-assembled monolayer (SAM) chains as rigid rods is examined to interrogate the mechanisms involved in monolayer ordering. The statistical mechanical predictions are compared to fully atomistic molecular dynamics simulations of SAMs with different packing densities. The monolayer chain order is examined as a function of surface coverage, chain-surface interactions, and chain–chain interactions. Reasonable interaction potentials are deduced from ab initio electronic structure calculations of small model systems. It is found that the chain-surface interaction is the most important parameter in formation of flat-lying monolayer phases, while formation of standing phase monolayers is driven most importantly by increased density of molecules at the surface. A brief discussion of the utility and validity of the rigid rod treatment is given in light of the molecular dynamics results.  相似文献   

18.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

19.
The van der Waals (vdW) interactions of n ‐alkanethiols (ATs) adsorbed on planar Au(111) and Au(100) surfaces and curved Au nanoparticles of different diameters are reported. By means of electrochemical measurements and molecular dynamic calculations, the increase in the average geometrical curvature of the surface influences the global interactions, that is, decreasing vdW interactions between neighboring molecules. Small NPs do not present the same electrochemical behavior as planar surfaces. The transition between nanoparticle to flat surface electrochemical response is estimated to occur at a circa 13–20 nm diameter range.  相似文献   

20.
We study the effect of dielectric anisotropy of polymers on their equilibrium ordering within mean-field theory, but with a formalism that takes into account the full n-body nature of van der Waals (vdW) forces. Dielectric anisotropy within polymers is to be expected as the electronic properties of the polymer will typically be different along the polymer than across its cross section. It is therefore physically intuitive that larger charge fluctuations can be induced along the chain than perpendicular to it. We show that this dielectric anisotropy leads to n-body interactions which can induce an isotropic-nematic transition. The two body and three body components of the full vdW interaction are extracted and it is shown how the two body term behaves like the phenomenological self-aligning-pairwise nematic interaction. At the three body interaction level we see that the nematic phase that is energetically favorable is discotic, however, on the full n-body interaction level we find that the normal axial nematic phase is always the stable ordered phase. The n-body nature of our approach also shows that the key parameter driving the nematic-isotropic transition is the bare persistence length of the polymer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号