首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different polarizable ion models for molten AgBr have been studied by molecular dynamics simulations. The three models are based on a rigid ion model (RIM) with a pair potential of the type proposed by Vashishta and Rahman for alpha-AgI, to which the induced dipole polarization of the ions is added. In the first (PIM1) the dipole moments are only induced by the local electric field, while in the other two (PIM1s and PIM2s) a short-range overlap induced polarization opposes the electrically induced dipole moments. In the PIM1 and the PIM1s only the anions are assumed polarizable, while in the PIM2s both species are polarizable. Long molecular dynamics simulations show that the PIM2s is an unphysical model since, for some improbable but possible critical configurations, the ions become infinitely polarized. The results of using the PIM1, the PIM1s, as well as those of the simple RIM, have been compared for the static structure and ionic transport properties. The PIM1 reproduces the broad main peak of the total structure factor present in the neutron diffraction data, although the smoothed three-peak feature of this broad peak is slightly overestimated. The structural results for the PIM1s are intermediate between those for the RIM and the PIM1, but fail to reproduce the experimental features within the broad principal peak. Concerning the ionic transport properties, the value of the conductivity obtained using PIM1 is in good agreement with experimental values, while the self-diffusion coefficients and the conductivity for the PIM1s are lower than the corresponding values using the PIM1 and the RIM.  相似文献   

2.
The results are reported of the molecular dynamics simulations of the coherent static structure factor of molten AgI at 923 K using a polarizable ion model. This model is based on a rigid ion potential, to which the many body interactions due to the anions induced polarization are added. The calculated structure factor is in better agreement with recent neutron diffraction data than that obtained by using simple rigid ion pair potentials. The Voronoi-Delaunay method has been applied to study the relationship between voids in the spatial distribution of cations and the prepeak of the structure factor.  相似文献   

3.
The structure, the ionic transport properties, and the dynamics of long-wavelength charge-density fluctuations, for two polarizable point dipole models of molten NaI, have been studied by molecular dynamics simulations. These models are based on a rigid ion potential to which the induced dipole polarization of the anions is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and short-range damping interactions that oppose the electrically induced dipole moments. The two polarizable ion models differ only in the range of the damping polarization interactions. The influence of the induced anion polarization on the different properties of simulated molten NaI is discussed.  相似文献   

4.
The structure factors of the ionic liquid mixture Ag(Br(0.7)I(0.3)) at three temperatures, 723, 923, and 1023 K, as well as of the pure molten AgI at 923 K and the pure molten AgBr at 773 and 923 K, were studied experimentally and by means of molecular dynamics simulations. The experiments were carried out using the high intensity total scattering time-of-flight spectrometer, HIT-II, at the KENS spallation neutron source in Japan. The experimental data are very reliable, with the possible exception of the small momentum transfer region, whose accessibility is limited by neutron energy and detector positions. The simulations made use of the semiempirical rigid ion potentials of the Vashishta-Rahman [Phys. Rev. Lett. 40, 1337 (1978)] type using a new set of parameters appropriate for the mixture. Within the known constraints of the pairwise rigid ion potentials, the simulated structure factors are in fair agreement with experiment. The results for the pair distribution functions suggest that the molten mixture retains the superionic character found in previous calculations of both the AgI and AgBr melts. This suggestion is confirmed by the results for the self-diffusion coefficients. Values obtained for the ionic conductivities are also presented.  相似文献   

5.
The structure of molten AgCl, AgI, and their eutectic mixture Ag(Cl(0.43)I(0.57)) is studied by means of molecular dynamics simulations of polarizable ion model potentials. The corresponding static coherent structure factors reproduce quite well the available neutron scattering data. The qualitative behavior of the simulated partial structure factors and radial distribution functions for molten AgCl and AgI is that predicted by the reverse Monte Carlo modeling of the experimental data. The AgI results are also in qualitative agreement with those calculated from ab initio molecular dynamics.  相似文献   

6.
A general analytical expression has been deduced for the I/E response of the square wave voltammetry corresponding to ion transfer processes in systems with two liquid/liquid polarized interfaces. This expression has been evaluated through the experimental study of a series of quaternary ammonium cations and metal chloro complex anions. We have found that systems with two liquid/liquid polarizable interfaces present the striking advantage that the difference between peak potentials of square wave voltammograms of cations and anions with similar standard ion transfer potential is much greater than in systems with a single polarizable one.  相似文献   

7.
We have evaluated the extent to which classical polarizable force fields, based either on the chemical potential equalization principle or on distributed polarizabilities in the framework of the Sum of Interactions Between Fragments Ab initio computed (SIBFA), can reproduce the ab initio polarization energy and the dipole moment of three distinct water oligomers: bifurcated chains, transverse hydrogen-bonded chains, and longitudinal hydrogen-bonded chains of helical shape. To analyze the many-body polarization effect, chains of different size, i.e., from 2 to 12 water monomers, have been considered. Although the dipole moment is a well-defined quantity in both classical polarizable models and quantum mechanical methods, polarization energy can be defined unequivocally only in the former type of approaches. In this study we have used the Kitaura-Morokuma (KM) procedure. Although the KM approach is on the one hand known to overestimate the polarization energy for strongly interacting molecules, on the other hand it can account for the many-body polarization effectively, whereas some other procedures do not. Our data show that, if off-centered lone pair polarizabilities are explicitly represented, classical polarizable force fields can afford a close agreement with the ab initio results, both in terms of polarization energy and in terms of dipole moment.  相似文献   

8.
Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. IY for the matrix (α-cyano-4-hydroxycinnamic acid, CHCA) was also measured. Taking 1 pmol salts in 25 nmol CHCA as examples, IYs for three salts were similar, (4–8) × 10−4, and those for CHCA were (0.8–1.2) × 10−7. Even though IYs for the salts and CHCA remained virtually constant at low analyte concentration, they decreased as the salt concentrations increased. Two models, Model 1 and Model 2, were proposed to explain low IYs for the salts and the concentration dependences. Both models are based on the fact that the ion-pair formation equilibrium is highly shifted toward the neutral ion pair. In Model 1, the gas-phase analyte cations were proposed to originate from the same cations in the solid that were dielectrically screened from counter anions by matrix neutrals. In Model 2, preformed ions were assumed to be released from the solid sample in the form of neutral ion pairs and the anions in the ion pairs were assumed to be eliminated via reactions with matrix-derived cations.  相似文献   

9.
We study the effects of ion size asymmetry and short-range correlations on the electrical double layer in ionic liquids: we perform molecular dynamics simulations of a model ionic liquid between two "electrodes" and calculate the differential capacitance of each as a function of the electrode potential. The capacitance curve has an asymmetric "bell-shape" character, in qualitative agreement with recent experiments and the mean- field theory (MFT) which takes into account the limitation on the maximal local density of ions. The short-range ionic correlations, not included in the MFT, lead to an overscreening effect which changes radically the structure of the double layer at small and moderate charging. With the radius of cations taken to be twice as large as anions, the position of the main capacitance maximum is shifted positively from the potential of zero charge (PZC), as predicted by MFT. An extension of the theory (EMFT), however, reproduces the simulated capacitance curve almost quantitatively. Capacitance curves for real ionic liquids will be affected by nonspherical shape of ions and sophisticated pair potentials, varying from liquid to liquid. But understanding the capacitance behavior of such model system is a basis for rationalizing those more specific features.  相似文献   

10.
The ability to separate fission products by electrodeposition from molten salts depends, in part, on differences between the interactions of the different fission product cations with the ions present in the molten salt "solvent". These differences may be expressed as ratios of activity coefficients, which depend on the identity of the solvent and other factors. Here, we demonstrate the ability to calculate these activity coefficient ratios using molecular dynamics simulations with sufficient precision to guide the choice of suitable solvent systems in practical applications. We use polarizable ion interaction potentials which have previously been shown to give excellent agreement with structural, transport, and spectroscopic information of the molten salts, and the activity coefficients calculated in this work agree well with experimental data. The activity coefficients are shown to vary systematically with cation size for a set of trivalent cations.  相似文献   

11.
The results are reported of the molecular dynamics simulations of the coherent static structure factor of molten CuI at 938 K using a polarizable ion model. This model is based on a rigid ion potential to which the many body interactions due to the anions induced polarization are added. The calculated structure factor reproduces the clear sharp prepeak observed in neutron diffraction data. The corresponding partial structure factors and the related radial distribution functions calculated by molecular dynamics are compared with those found in the literature derived from a combination of neutron and x-ray diffraction data with the aid of the reverse Monte Carlo simulation technique, as well as those calculated by ab initio MD simulations.  相似文献   

12.
We use a Flory-Huggins type approach and the random phase approximation (RPA) to describe a microphase separation in the mixture of ionic and nonionic liquids. The mixture is modeled as a "three-component" system including anions, cations, and neutral molecules. Each ion is considered to consist of a charged group surrounded by a neutral "bulky" shell. The shells of the anion and cation are assumed to have different affinities to the neutral molecules. We show that, if the difference of the Flory-Huggins parameters describing affinities of the anions and cations to the neutral molecules is higher than a certain value, the microphase separation can occur. The physical reason for the separation is a delicate balance between the short-range segregating interactions and the long-range Coulomb interactions.  相似文献   

13.
The properties of two improved versions of charge-on-spring (COS) polarizable water models (COS/G2 and COS/G3) that explicitly include nonadditive polarization effects are reported. In COS models, the polarization is represented via a self-consistently induced dipole moment consisting of a pair of separated charges. A previous polarizable water model (COS/B2), upon which the improved versions are based, was developed by Yu, Hansson, and van Gunsteren. To improve the COS/B2 model, which overestimated the dielectric permittivity, one additional virtual atomic site was used to reproduce the water monomer quadrupole moments besides the water monomer dipole moment in the gas phase. The molecular polarizability, residing on the virtual atomic site, and Lennard-Jones parameters for oxygen-oxygen interactions were varied to reproduce the experimental values for the heat of vaporization and the density of liquid water at room temperature and pressure. The improved models were used to study the properties of liquid water at various thermodynamic states as well as gaseous water clusters and ice. Overall, good agreement is obtained between simulated properties and those derived from experiments and ab initio calculations. The COS/G2 and COS/G3 models may serve as simple, classical, rigid, polarizable water models for the study of organic solutes and biopolymers. Due to its simplicity, COS type of polarization can straightforwardly be used to introduce explicit polarization into (bio)molecular force fields.  相似文献   

14.
The ionic conductivity was measured in the temperature range 250–300 K as a function of composition of superionic conducting glasses in the pseudobinary system AgIAg2MoO4. The conductivity, ranging from 10?2 to 10?4 Ω?1 cm?1 at room temperature, increases linearly in logarithmic scale with increasing AgI content, while the total silver ion concentration remains nearly constant in the whole glass-forming region of the present system. Such a composition dependence of conductivity is considered to be evidence that only a fraction of the silver ions in glass contributes to the ionic conduction. The conductivity and the activation energy for conduction differ slightly between bulk glasses and pressed pellets of pulverized glasses. The close agreement in bulk glasses and pellets suggests that bulk rather than grain boundary or surface diffusion dominates the conduction process in the present glasses.  相似文献   

15.
The explicit treatment of polarization as a many-body interaction in condensed-phase systems represents a current problem in empirical force-field development. Although a variety of efficient models for molecular polarization have been suggested, polarizable force fields are still far from common use nowadays. In this work, we consider interactive polarization models employing Thole's short-range damping scheme and assess them for application on polypeptides. Despite the simplicity of the model, we find mean polarizabilities and anisotropies of amino acid side chains in excellent agreement with MP2/cc-pVQZ benchmark calculations. Combined with restrained electrostatic potential (RESP) derived atomic charges, the models are applied in a quantum-mechanical/molecular-mechanical (QM/MM) approach. An iterative scheme is used to establish a self-consistent mutual polarization between the QM and MM moieties. This ansatz is employed to study the influence of the protein polarizability on calculated optical properties of the protonated Schiff base of retinal in rhodopsin (Rh), bacterio-rhodopsin (bR), and pharaonis sensory rhodopsin II (psRII). The shifts of the excitation energy due to the instantaneous polarization response of the protein to the charge transfer on the retinal chromophore are quantified using the high level ab initio multireference spectroscopy-oriented configuration interaction (SORCI) method. The results are compared with those of previously published QM1/QM2/MM models for bR and psRII.  相似文献   

16.
A molecular modeling approach is introduced as a way to treat multibody (more than two molecules) contributions to the intermolecular potential. There are two key features to the method. First, it employs polarizable electrostatics on the molecules, but converges the charges and fields for only three molecules at a time, taken separately for all trimers (three molecules falling within a cutoff distance) in the system. This feature introduces significant computational savings when applied in Monte Carlo simulation (in comparison to a full N-body polarization treatment), as movement of a single molecule does not require re-converging of the polarization of all molecules, and it achieves this without approximations that cause the value of the energy to depend on the history of the simulation. Second, the approach defines the polarization energy in excess of the pairwise contribution, meaning that the trimer energy has subtracted from it the sum of the energies obtained by converging the polarization of each molecule pair in the trimer. This feature is advantageous because it removes the need (often found in polarizable models) to stiffen inappropriately the repulsive part of the pair potential. The polarization contribution is thus a purely three-body potential. The approach is applied to model hydrogen fluoride, which in experiments exhibits unusual properties that have proven difficult to capture well by molecular models. The new HF model is shown to be much more successful than previous modeling efforts in obtaining agreement with a broad range of experimental data (volumetric properties, heat effects, molecular structure, and vapor-liquid equilibria).  相似文献   

17.
Protein solubility studies below the isoelectric point exhibit a direct Hofmeister series at high salt concentrations and an inverse Hofmeister series at low salt concentrations. The efficiencies of different anions measured by salt concentrations needed to effect precipitation at fixed cations are the usual Hofmeister series (Cl(-) > NO(3)(-) > Br(-) > ClO(4)(-) > I(-) > SCN(-)). The sequence is reversed at low concentrations. This has been known for over a century. Reversal of the Hofmeister series is not peculiar to proteins. Its origin poses a key test for any theoretical model. Such specific ion effects in the cloud points of lysozyme suspensions have recently been revisited. Here, a model for lysozymes is considered that takes into account forces acting on ions that are missing from classical theory. It is shown that both direct and reverse Hofmeister effects can be predicted quantitatively. The attractive/repulsive force between two protein molecules was calculated. To do this, a modification of Poisson-Boltzmann theory is used that accounts for the effects of ion polarizabilities and ion sizes obtained from ab initio calculations. At low salt concentrations, the adsorption of the more polarizable anions is enhanced by ion-surface dispersion interactions. The increased adsorption screens the protein surface charge, thus reducing the surface forces to give an inverse Hofmeister series. At high concentrations, enhanced adsorption of the more polarizable counterions (anions) leads to an effective reversal in surface charge. Consequently, an increase in co-ion (cations) adsorption occurs, resulting in an increase in surface forces. It will be demonstrated that among the different contributions determining the predicted specific ion effect the entropic term due to anions is the main responsible for the Hofmeister sequence at low salt concentrations. Conversely, the entropic term due to cations determines the Hofmeister sequence at high salt concentrations. This behavior is a remarkable example of the charge-reversal phenomenon.  相似文献   

18.
In the current opinion, the inclusion of polarization response in classical computer simulations is considered as one of the most important and urgent improvements to be implemented in modern empirical potential models. In this work we focus on the capability of polarizable models, based on the pairwise Coulomb interactions, to model systems where strong electric fields enter into play. As shown by Masia, Probst, and Rey (MPR) [in J. Chem. Phys. 121, 7362 (2004)], when a molecule interacts with point charges, polarizable models show underpolarization with respect to ab initio methods. We prove that this underpolarization, clearly related to nonlinear polarization effects, cannot be simply ascribed to the lack of hyperpolarization in the polarizable models, as suggested by MPR. Analysis of the electron-density rearrangement induced on a water molecule by a point charge reveals a twofold level of polarization response. One level involves intramolecular charge transfer on the whole molecular volume, with the related polarization exhibiting a seemingly linear behavior with the external electric field. The other nonlinear polarization level occurs only at strong electric fields and is found to be strictly correlated to the quantum-mechanical nature of the water molecule. The latter type of polarization has a local character, being limited to the space region of the water lone pairs.  相似文献   

19.
NaCl-NaBr系熔盐溶液的分子动力学研究   总被引:6,自引:0,他引:6  
近年来,用计算机模拟馆公的结构和性质的研究已有较大进展[1,2].但研究工作多集中在有阴离子相同、阳离子不同的盐组成的“同阴离子系”(commonanionsystems),而对由阳离子相同、阴离子不同的盐组成的“同阳离子系”(commoncationsystems)熔盐溶液则甚少研究.鉴于自然界和生产中同阳离子系也不乏实例,建立同阳离子系熔盐溶液的理论屯有必要.为止匕我们先选择NaCI-NaBr系熔盐溶液(同阳离子系的一个最简单的典型)为对象,开展分子动力学方法计算机模拟研究.1模型和计算方法采用标准文献中的计算模拟和方法,离子间劳用Fumi-…  相似文献   

20.
Several Li+- and Na+-acetonitrile models were derived from ab initio calculations at the counterpoise-corrected MP2/TZV++(d,p) level for distorted ion-(MeCN)n clusters with n=1, 4 and 6. Two different many-body ion-acetonitrile models were constructed: an effective three-body potential for use with the six-site effective pair model of Böhm et al., and an effective polarizable many-body model. The polarizable acetonitrile model used in the latter model is a new empirical model which was also derived in the present paper. Mainly for comparative purposes, two ion-acetonitrile pair potentials were also constructed from the ab initio cluster calculations: one pure pair potential and one effective pair potential. Using all these potential models, MD simulations in the NPT ensemble were performed for the pure acetonitrile liquid and for Li+(MeCN) and Na+(MeCN) solutions with 1 ion in 512 solvent molecules and with a simulation time of at least 120 ps per system. Thermodynamic properties, solvation-shell structure and the self-diffusion coefficient of the ions and of the solvent molecules were calculated and compared between the different models and with experimental data, where available. The Li+ ion is found to be four-coordinated when the new many-body potentials are used, in contrast to the six-coordinated structure obtained for the pure pair and effective pair potentials. The coordination number of Na+ is close to six for all the models derived here, although the coordination number becomes slightly smaller with the many-body potentials. For both ions, the solvent molecules in the first shell point their nitrogen ends towards the cation, while in the second shell the opposite orientation is the most common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号