首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
王文清   《物理化学学报》2005,21(7):774-781
利用X衍射(300, 270, 250 K)和中子衍射(300, 260, 250, 240 K)研究D-氨酸单晶在静态的和动力学的变温过程中的结构特征以及考证Salam预言的由D到L构型转变的可能性. 实验发现丙氨酸晶体的空间群P212121对称性没有改变. 实验结果否定了构型相变的可能,但是发现在~250 K有一个微小的、连续的对称性破缺发生. 晶体分子振动产生的环电流模型可以用来解释D-和L-丙氨酸单晶直流磁化率和天然旋光角相反的现象, 与之相关的中子衍射数据进一步揭示了变温过程中αC-H(2), N-H(1), N-H(4), N-H(6) 键长的不同变化. 中子衍射还显示了质子移动所导致的动力学无序,来源于分子内氨基和羧基形成的氢键和分子间αC-H和氨基形成的氢键,从而产生的晶格扭曲和NH3+的扭转. 实验结果表明Salam预言相变不是传统意义的结构相变,而是由于温度效应导致了在相变点附近分子的宇称破缺能差(PVED)增大,然后通过氨基酸分子的隧道效应扩大了宇称破缺能差的影响,这一研究为生命现象中快速的均一手性形成提供了非线性机理的合理解释.  相似文献   

2.
在宇宙开始大爆炸的时候,电荷变号与镜象反射共轭(CP)是对称的.但现在我们的宇宙绝大部分是正物质核子和电子等组成的,所以我们的宇宙是不对称的. D和L-丙氨酸通常称为对映体(enantiomer),实际上它们并不是由正、反粒子组成的真正的对映体,而是空间反演的,即x→-x, y→-y, z→-z 的非对映异构体(diastereoisomer),所以D-和L-丙氨酸是不对称的,两者间有能量的差别.自然界的力只有弱力是宇称不守恒的.在分子物理中,电弱力宇称不守恒是导致D-和L-丙氨酸能差的根源.所有以前的研究都认为L型丙氨酸比D型稳定.但是,最近以 Quack和 Schwerdtfeger为首的理论物理学家计算了L-丙氨酸在气相和溶液两种状态下,宇称破缺能差与分子构象的关系,提出“D-和L-丙氨酸究竟哪一个稳定”的质疑.由于气相和液相中两面角较难测定,我们用X射线四圆单晶衍射法,测定了270 K和250 K 时D-和L-丙氨酸的O(1)O(2)C(1)C(2)H(4)的原子坐标,算出了二面角,按照 Quack的MC-LR方法,D-和L-丙氨酸宇称破缺能差为1.2×10-19 Hartree, 相当于3.3× 10-18 eV/分子或3.2×10-16 kJ•mol-1,从而得出D-丙氨酸能态高于L-丙氨酸的结论.  相似文献   

3.
利用变温直流磁化率测定, 在外加磁场强度为1 T, 磁场平行晶体c轴, 发现在温度270 K, D-和L-丙氨酸发生磁手性相变. 结合中子衍射确定磁手性相变机制为, D-和L-丙氨酸中的(N+H)有类金属氢原子特性, 在相变点270 K, 由(N+H)释放的电子自旋有磁手性. 用变温偏振拉曼光谱进一步证明, D-丙氨酸中的(N+H)的电子自旋(↑), 而L-丙氨酸中的电子自旋(↓), 处于高低不同的能态.磁手性相变(宇称和时间反演都破缺)能差为10-4-10-5 eV·molecule-1.  相似文献   

4.
王文清  闵玮   《物理化学学报》2005,21(10):1186-1194
运用统计理论热力学函数自由能ΔG、焓ΔH、熵ΔS、平衡常数K与粒子平动、振动、转动配分函数关系, 并通过变温D- 与L-CDBrClF实例计算, 证明在宏观温度变量下, 可以导致手性分子D⇔L平衡中宇称破缺熵差的反号. 根据作者科研组14年来, 采用变温X衍射、中子衍射、比热、直流和交流磁化率、1H和13C固相核磁共振、拉曼光谱、晶体旋光和双折射、超声测定相变等实验方法, 证明Salam假说预言的温度范围(200~250 K)存在温度变量诱导的相变, 产生自发对称性破缺. 在宇称破缺能差(PVED)接近0条件下, 宇称破缺熵差导致D和L分子反向的物理行为, 产生分叉机制(bifurcation mechanism). D和L分子的能量差别, 可能是早期生命起源时, L氨基酸富集的原因. 实验还发现, 在低温变温下自发对称破缺的复原. 由于晶相结构限制分子重排, Salam相变不是D→L的构型相变.  相似文献   

5.
对称性破缺是自然界特别是生命体内常见的一种现象。开展手性分子在结晶过程中自发对称性破缺发生的机理与机制研究,将会为探索生命起源提供更多新的科学依据。本文主要从自发对称性破缺的基本原理、结晶诱导的手性分子对称性破缺的机制方面进行综述,并讨论了影响结晶过程中自发对称性破缺的各种因素。  相似文献   

6.
王文清  梁智 《物理化学学报》2001,17(12):1077-1085
为什么构成生命的蛋白质全由L型氨基酸组成(DNA和RNA全由D核糖组成),这是至今未解的科学之谜.由Z°玻色子介导的弱中性流宇称破缺被认为是造成生命分子手性起源的主要原因.1991年Salam提出由于Z°相互作用,电子与电子或电子与核子耦合形成库柏对,在其临界低温下玻色凝聚,有可能引起氨基酸由D型向L型的二级相变,并理论预测相变温度为250 K.本文用差分绝热连续加热量热法测定了100~300 K下D-缬氨酸(丙氨酸)和L-缬氨酸(丙氨酸)的Cp-T图,实验发现在270 K有明显的λ型二级相变.用量子磁强计测定了正向与反向1万高斯下直流磁化率行为,显示出D和L型氨基酸不同电子手征性密度特征.利用毛细管手性柱气相色谱分析否定了Salam预言的氨基酸由D型到L型相变的可能性.本文在实验中发现的相变,虽然不是D型到L型相变,但检测出了电弱力宇称不守恒能差在分子水平上的反映.  相似文献   

7.
手性丙氨酸单晶的极性N+H…O氢键在~270 K的自发对称性破缺, 可用变温拉曼振动光谱在b(cc)b几何条件下在线测定. 由于其对手性的灵敏度, 可以测定D-和L-丙氨酸的N+H…O氢键在电子自旋翻转相变时的微小能差. 晶体定向能量的正/负, 在于电子自旋的上/下转向, 取决于原子内在磁场的方向. 变温拉曼振动光谱可以观察到: 在D-和L-丙氨酸单晶之间, 拉曼散射光子的波数位移方向相反, 散射光子的不对称度约为1/3. 由于自旋是轴矢量, 样品必须是单晶, 沿轴向测定. 多晶粉末不能观察到相变. 与次甲基(Cα-H)在260 K的自旋翻转相变, 用变温拉曼振动光谱在c(aa)c 几何条件下的相对测量结果接近一致. 本实验提供了一条证明真实手性和“宇称-时间(PT)不对称”的新线索.  相似文献   

8.
王文清  沈新春  龚 《物理化学学报》2010,26(10):2597-2603
为了解D-和L-丙氨酸单晶晶格在极低温下是否存在磁手性相变,在2-20 K下改变磁场强度(0,1,3,5T)测定其比热.实验结果表明比热和温度之间的函数关系很好地符合C(T)=aT3+b/T2方程,其中aT3项为晶格声子的贡献,可由公式CV=(12/5)π4R(T/ΘD)3来描述(ΘD为德拜温度),b/T2项为磁场对比热的贡献.实验发现,在2-20 K范围内D-和L-丙氨酸单晶在不同磁场强度下均存在Boson峰(在Cp/T3-T曲线中表现为一个最大值).磁的贡献导致D-和L-丙氨酸单晶的四条Cp/T3-T曲线在2-12 K时不重合,且在12-20 K时消失,此即Schottky反常.零磁场下,D-和L-丙氨酸的Boson峰分别为9.44和10.86 K;德拜温度分别为151.5和152.7 K.结合磁场强度1 T下的直流磁化率测定,发现在温度低于5 K时,D-和L-丙氨酸单晶有相反的磁化率行为,反映了核自旋和电子自旋弱相互作用的手性表现.  相似文献   

9.
用简单的非手性原料醋酸锌和乙二胺在高氯酸钠的甲醇溶液中反应,反应过程中发生了对称性破缺现象,得到了一对对映体Δ-cis-[Zn(en)2Ac][ClO4](Δ-1)andΛ-cis-[Zn(en)2Ac][ClO4](Λ-1)(en=乙二胺,Ac-=醋酸根)。用元素分析、红外光谱、CD光谱和Xray单晶衍射对产物进行了表征。X-ray单晶衍射结果表明配合物Δ-1和Λ-1中的锌(Ⅱ)离子均与2个乙二胺上的4个氮原子和醋酸根上的2个氧原子顺式配位,形成六配位畸变的八面体构型。{Δ-cis-[Zn(en)2Ac]}+和{Λ-cis-[Zn(en)2Ac]}+单体通过氢键作用分别形成具有右手和左手双螺旋的一维链。用X-ray单晶衍射和CD光谱确定了配合物的手性特征。  相似文献   

10.
为了解决D-和L-丙氨酸在约270K相变的分岐和机理,对其单晶、多晶粉末及原料利用微分扫描量热仪测定比热.用三线法以蓝宝石作校正,并与手册的D-和L-丙氨酸标准比热值比较.在单晶中,实验观察到吸热相变峰最高处时的温度及热焓为:D-丙氨酸,Tc=272.02K,△H=1.87J·mol-1;L-丙氨酸,Tc=271.85K,△H=1.46J·mol-1;热焓差为0.41J·mol-1.参比晶体D-缬氨酸,Tc=273.59K,△H=1.75J·mol-1;L-缬氨酸,Tc=273.76K,△H=1.57J·mol-1;热焓差为0.18J·mol-1.实验发现已测量过的单晶磨成多晶粉末后再测,相变峰消失.说明相变与晶格有关.变温中子衍射排除了D→L的构型相变,但发现N+H…O-氢键沿D-和L-丙氨酸单晶的c轴反向变化.变温偏振拉曼散射反映相变机制与N+H…O-中电子的轨道磁偶极矩相关,观察到偏振光的不对称散射.在外加磁场强度H为+1T和-1T下,变温测定D-和L-丙氨酸晶体的直流磁化率,证明在270K有电子自旋翻转的相变.电子自旋的向上或向下,取决于晶格中NH+3的扭曲振动及N+H…O-氢键沿晶体c轴的方向.由于自旋的定轴性,可以解释单晶和多晶粉末比热结果的分岐.  相似文献   

11.
12.
A chiral spin state of (N+H) in D- and L-alanine was established by monitoring the temperature dependence of dc-magnetic susceptibility (dc: direct current) under the external magnetic field of 1 T. An intrinsic spin chirality of electrons in the atomic magnetic dipole moment of (N+H) was also supported by polarized Raman spectroscopy. Magnetic chirality was associated with a strongly correlated electron system that was related to spin rigidity. Raman vibrational spectra were unrelated to structural chirality but could reflect spin chirality due to the reversal of motion breaking. The spin transition of (N+H) occured at 270 K without bond breaking but was assisted by an intermediate hydrogen bond elongation, splitting and reformation with NH3+ torsion. The energy difference of spin chirality transitions between D- and L-alanine was around 10−4-10−5 eV·molecule−1.  相似文献   

13.
Measuring the parity‐violating energy difference ΔpvE between the enantiomers of chiral molecules is a major challenge of current physical‐chemical stereochemistry. An important step towards this goal is to identify suitable molecules for such experiments by means of theory. This step has been made by calculations for the complex dynamics of tunneling and electroweak quantum chemistry of parity violation in the “classic” molecule trisulfane, HSSSH, which satisfies the relevant conditions for experiments almost ideally, as the molecule is comparatively simple and parity violation clearly dominates over tunneling in the ground state. At the same time, the barrier for stereomutation is easily overcome by the S?H infrared chromophore.  相似文献   

14.
Here we describe the story behind the link between molecular chirality and macroscopic phenomena, the latter being a probe for the direct assignment of absolute configuration of chiral molecules. First, a brief tour of the history of molecular stereochemistry, starting with the classic experiment reported by Pasteur in 1848 on the separation of enantiomorphous crystals of a salt of tartaric acid, and his conclusion that the molecules of life are chiral of single-handedness. With time, this study raised, inter alia, two fundamental questions: the absolute configuration of chiral molecules and how a molecule of given configuration shapes the enantiomorphous morphology of its crystal. As for the first question, following the beginning of crystal structure determination by X-ray diffraction in 1912, it took almost 40 years before Bijvoet assigned molecular chirality through the esoteric method involving anomalous X-ray scattering. We have been able to address and link both questions through ‘everyday concepts of left and right’ (in the words of Jack Dunitz) by the use of ‘tailor-made’ auxiliaries. By such means, it proved possible to reveal, through morphology, etch patterns, epitaxy and symmetry reduction of both chiral and, paradoxically, centrosymmetric crystals, the basic chiral symmetry of the molecules of life, the α-amino acids and sugars.  相似文献   

15.
The spinning cone is a model of rotating molecules used by Barron in 1986 in relation to asymmetric synthesis and to parity violation. He considered that the non-translating cone spinning about its symmetry axis has false chirality (i.e., it is not chiral), whereas Mislow concluded in 1999 that it is indeed chiral and severely criticized the true versus false chirality nomenclature introduced by Barron, who still disagreed in 2013 with the conclusion of Mislow. Here, it is shown that this controversy comes from an ambiguity in the spinning cone model and that in fact both authors were right. Light is thrown on the true chirality versus false chirality controversy with a very recently published result, which was thus unavailable to both authors: this is a new definition of chirality that encompasses the one introduced by Lord Kelvin at the end of the 19th century.  相似文献   

16.
17.
Life, as it is known to us, uses exclusively L ‐amino acid and D ‐sugar enantiomers for the molecular architecture of proteins and nucleic acids. This Minireview explores current models of the original symmetry‐breaking influence that led to the exogenic delivery to Earth of prebiotic molecules with a slight enantiomeric excess. We provide a short overview of enantiomeric enhancements detected in bodies of extraterrestrial origin, such as meteorites, and interstellar ices simulated in the laboratory. Data are interpreted from different points of view, namely, photochirogenesis, parity violation in the weak nuclear interaction, and enantioenrichment through phase transitions. Photochemically induced enantiomeric imbalances are discussed more specifically in the topical context of the “chirality module” on board the cometary Rosetta spacecraft of the ESA. This device will perform the first enantioselective in situ analyses of samples taken from a cometary nucleus.  相似文献   

18.
A neutron powder diffraction study on lithium titanate Li2TiO3 was performed at low temperatures. The monoclinic β-phase has been found to be stable over the whole investigated range of temperatures (4 K–300 K). A smooth and nonlinear increase of the lattice parameters has been observed upon heating and correlated to the behavior of interatomic distances. Lithium diffusion pathways in Li2TiO3 were estimated theoretically on the basis of the obtained structural data using bond-valence modeling. Experimentally diffusion pathways were evaluated by analysis of the negative nuclear scattering densities at 1073 K, which were reconstructed using a maximum entropy method. Although the bond-valence mismatch map indicated a possible Li diffusion either in ab plane or along c direction, analysis of the experimental data revealed that Li migration is thermodynamically less feasible in latter case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号