首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
The matrix isolation technique has been combined with infrared spectroscopy to identify and characterize the product of the codeposition of CH3ReO3 with NH3 into inert matrices at 14 K. This codeposition led to the formation of the isolated 1:1 complex between these two reagents and its isolation in argon and nitrogen matrices. The complex is characterized by perturbations to all of the vibrational modes of the NH3 subunit in the complex, including a large, 185 cm(-1) blue shift of v2, the symmetric deformation mode. In addition, shifts of the -ReO3 antisymmetric stretch and -ReO3 symmetric bending of the CH3ReO3 subunit in the complex were observed. This complex, while predicted theoretically, has not been reported previously.  相似文献   

2.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

3.
We have recorded several rovibronic bands of CH3OO and CD3OO in their A<--X transitions in the range of 1.18-1.40 microm with the cavity ringdown technique. While the electronic origins for these species have been reported previously, many newly observed rovibronic bands are described here. The experimental vibrational frequencies (given as nu in the unit cm(-1) in this paper) for the COO bending (nu8) and COO symmetric stretching (nu7) modes in the A state are 378 and 887 cm(-1) for CH3OO, and 348 and 824 cm(-1) for CD3OO, respectively. In addition, two other vibrational frequencies were observed for the A state of CD3OO, namely, nu5 (954 cm(-1)) and nu6 (971 cm(-1)). These experimental vibrational frequencies for the A state of both CH3OO and CD3OO are in good agreement with predictions from quantum-chemical calculations at the UB3LYP/aug-cc-pVTZ level. The enhanced activity of the nu5 vibrational mode in CD3OO is rationalized by mode mixing with the nu7 mode, as supported by calculations of multidimensional Franck-Condon factors. In addition, many hot bands involving the methyl torsional mode (nu12) are observed for both normal and deuterated methyl peroxy. These bands include the "typical" sequence transitions and some "atypical" ones due to the nature of the eigenvalues and eigenfunctions which are a consequence of the low, but very different, torsional barriers in the X and A states. In addition, the 12(2)2 band in CH3OO and the 12(3)3 band in CD3OO show quite different structures than the origin bands, an effect which results from tunneling splittings comparable to the rotational contour.  相似文献   

4.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

5.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

6.
Fourier transform infrared spectra of the nu(s) (HF stretching) band of the (CH(2))(2)S-HF complex have been recorded at 0.1-0.5 cm(-1) resolution in a cooled cell, in a supersonic jet expansion seeded with argon and in a neon matrix at 4.5 K. The combination of controlled temperature effects over a range of 40-250 K and a sophisticated band contour simulation program allows the separation of homogeneous and inhomogeneous contributions and reveals significant anharmonic couplings between intramolecular and intermolecular vibrational modes similar to our previous work on (CH(2))(2)S-DF. The sign of the coupling constants is consistent with the expected strengthening of the hydrogen bond upon vibrational excitation of HF which also explains the observed small variations of the geometrical parameters in the excited state. The analysis of sum and difference combination bands involving nu(s) provides accurate values of intermolecular harmonic frequencies and anharmonicities and a good estimate of the dissociation energy of the complex. Frequencies and coupling parameters derived from gas phase spectra compare well with results from neon matrix experiments. The effective linewidth provides a lower bound for the predissociation lifetime of 10 ps. The comparison between effective linewidths and vibrational densities of states for (CH(2))(2)S-HF and -DF complexes highlights the important role of intramolecular vibrational redistribution in the vibrational dynamics of medium strength hydrogen bonds.  相似文献   

7.
Raman spectra of propylamine (C3H7NH2) and its binary mixtures, C3H7NH2 + CH3OH with varying mole fractions of the reference system, C3H7NH2, C were recorded in two widely apart wavenumber regions, 3100-3600 cm(-1) and 1225-1325 cm(-1). In the former region, the two Raman bands at approximately 3305 and approximately 3326 cm(-1), obtained after the line shape analysis, which were assigned to symmetric nu(N-H) and anti-symmetric nu(N-H) stretching modes, respectively, show a downshift upon dilution. However, whereas the nu(N-H) anti-symmetric mode shows a shift of 18.6 cm(-1), the nu(N-H) symmetric mode shows a much smaller shift (5.7 cm(-1)) between neat liquid and high dilution, C = 0.1. This aspect has been explained using the optimized geometries calculated employing ab initio theory (MP2 level) for the neat C3H7NH2 and its different hydrogen-bonded complexes. The linewidth versus concentration plot for the nu(N-H) anti-symmetric stretching mode, however exhibits a distinct maxima at C = 0.4, which has been explained as a slight departure from the concentration fluctuation model. In the latter region, a symmetric peak is observed, which corresponds to nu(C-N) stretching mode, which shows an upshift upon dilution and an almost linear concentration dependence. This has also been explained in terms of the parameters obtained from the optimized geometries of the different hydrogen-bonded complexes.  相似文献   

8.
By using a high-resolution single mode infrared-optical parametric oscillator laser to prepare CH(3)I in single (J,K) rotational levels of the nu(1) (symmetric C-H stretching) =1 vibrational state, we have obtained rovibrationally resolved infrared-vacuum ultraviolet-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectra of the CH(3)I(+)(X(2)E(32);nu(1)(+)=1;J(+),P(+)) band, where (J,K) and (J(+),P(+)) represent the respective rotational quantum numbers of CH(3)I and CH(3)I(+). The IR-VUV-PFI-PE spectra observed for K=0 and 1 are found to have nearly identical structures. The IR-VUV-PFI-PE spectra for (J,K)=(5,0) and (7, 0) are also consistent with the previous J-selected IR-VUV-PFI-PE measurements. The analysis of these spectra indicates that the photoionization cross section of CH(3)I depends strongly on DeltaJ(+)=J(+)-J: but not on J and K. This observation lends strong support for the major assumption adopted for the semiempirical simulation scheme, which has been used for the simulation of the origin bands observed in VUV-PFI-PE study of polyatomic molecules. Using the state-to-state photoionization cross sections determined in this IR-VUV study, we have obtained excellent simulation of the VUV-PFI-PE origin band of CH(3)I(+)(X (2)E(32)), yielding more precise IE(CH(3)I)=76 930.7+/-0.5 cm(-1) and nu(1) (+)=2937.8+/-0.2 cm(-1).  相似文献   

9.
Raman spectroscopy has been used to study the tellurite minerals spiroffite and carlfriesite, which are minerals of formula type A(2)(X(3)O(8)) where A is Ca(2+) for the mineral carlfriesite and is Zn(2+) and Mn(2+) for the mineral spiroffite. Raman bands for spiroffite observed at 721 and 743 cm(-1), and 650 cm(-1) are attributed to the nu(1) (Te(3)O(8))(2-) symmetric stretching mode and the nu(3) (Te(3)O(8))(2-) antisymmetric stretching modes, respectively. A second spiroffite mineral sample provided a Raman spectrum with bands at 727 cm(-1) assigned to the nu(1) (Te(3)O(8))(2-) symmetric stretching modes and the band at 640cm(-1) accounted for by the nu(3) (Te(3)O(8))(2-) antisymmetric stretching mode. The Raman spectrum of carlfriesite showed an intense band at 721 cm(-1). Raman bands for spiroffite, observed at (346, 394) and 466 cm(-1) are assigned to the (Te(3)O(8))(2-)nu(2) (A(1)) bending mode and nu(4) (E) bending modes. The Raman spectroscopy of the minerals carlfriesite and spiroffite are difficult because of the presence of impurities and other diagenetically related tellurite minerals.  相似文献   

10.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

11.
Selective vibrational excitation controls the competition between C-H and C-D bond cleavage in the reaction of CH(3)D with Cl, which forms either HCl + CH(2)D or DCl + CH(3). The reaction of CH(3)D molecules with the first overtone of the C-D stretch (2nu(2)) excited selectively breaks the C-D bond, producing CH(3) exclusively. In contrast, excitation of either the symmetric C-H stretch (nu(1)), the antisymmetric C-H stretch (nu(4)), or a combination of antisymmetric stretch and CH(3) umbrella bend (nu(4) + nu(3)) causes the reaction to cleave only a C-H bond to produce solely CH(2)D. Initial preparation of C-H stretching vibrations with different couplings to the reaction coordinate changes the rate of the H-atom abstraction reaction. Excitation of the symmetric C-H stretch (nu(1)) of CH(3)D accelerates the H-atom abstraction reaction 7 times more than excitation of the antisymmetric C-H stretch (nu(4)) even though the two lie within 80 cm(-1) of the same energy. Ab initio calculations and a simple theoretical model help identify the dynamics behind the observed mode selectivity.  相似文献   

12.
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1).  相似文献   

13.
Irradiation with a mercury lamp at 254 nm of a p-H(2) matrix containing CH(3)I and SO(2) at 3.3 K, followed by annealing of the matrix, produced prominent features at 633.8, 917.5, 1071.1 (1072.2), 1272.5 (1273.0, 1273.6), and 1416.0 cm(-1), attributable to ν(11) (C-S stretching), ν(10) (CH(3) wagging), ν(8) (SO(2) symmetric stretching), ν(7) (SO(2) antisymmetric stretching), and ν(4) (CH(2) scissoring) modes of methylsulfonyl radical (CH(3)SO(2)), respectively; lines listed in parentheses are weaker lines likely associated with species in a different matrix environment. Further irradiation at 365 nm diminishes these features and produced SO(2) and CH(3). Additional features at 1150.1 and 1353.1 (1352.7) cm(-1) are tentatively assigned to the SO(2) symmetric and antisymmetric stretching modes of ISO(2). These assignments are based on comparison of observed vibrational wavenumbers and (18)O- and (34)S-isotopic shifts with those predicted with the B3P86 method. Our results agree with the previous report of transient IR absorption bands of gaseous CH(3)SO(2) at 1280 and 1076 cm(-1). These results demonstrate that the cage effect of solid p-H(2) is diminished so that CH(3) radicals, produced via UV photodissociation of CH(3)I in situ, might react with SO(2) to form CH(3)SO(2) during irradiation and upon annealing. Observation of CH(3)SO(2) but not CH(3)OSO is consistent with the theoretical predictions that only the former reactions proceed via a barrierless path.  相似文献   

14.
The 1:1 complex of OVCl(3) with (CH(3))(2)O has been isolated in argon matrices at 14 K, and characterized by infrared spectroscopy. The complex is relatively strongly bound, with significant shifts to vibrational modes of both the acid and base subunits in the complex. For example, the OC(2) symmetric stretch of (CH(3))(2)O shifted from 925 to 891 cm(-1) upon complex formation, while the VCl(3) antisymmetric stretching mode shifted from 505 to 474 cm(-1). Product identification and band assignments were confirmed by isotopic labeling. Attempts to convert the initial 1:1 complex into secondary intermediates by either thermal or photochemical processes were unsuccessful, suggesting that an active hydrogen atom is a key element in determining the pathway for reactions of OVCl(3).  相似文献   

15.
The complex formed between methanol and tetrafluoromethane has been identified in argon and neon matrixes by help of FTIR spectroscopy. Three fundamentals (nu(OH), nu(FCF), and nu(CO)) were observed for the complex isolated in the two matrixes, and the OH stretch was red shifted in a neon matrix and blue shifted in an argon matrix with respect to the corresponding vibration of the methanol monomer. The theoretical studies of the structure and spectral characteristics of the complexes formed between CH(3)OH and CF(4) were carried out at the MP2 level of theory with the 6-311+G(2df,2pd) basis set. The calculations resulted in three stationary points from which two (I-1, I-2) corresponded to structures involving the O-H...F hydrogen bond and the third one (I-3) to the non-hydrogen-bonded structure. The topological analysis of the distribution of the charge density (AIM theory) confirmed the existence of the hydrogen bond in I-1, I-2 complexes and indicated weak interaction between the oxygen atom of CH(3)OH and three fluorine atoms of CF(4) in the I-3 complex. The comparison of the experimental and theoretical data suggests that in the matrixes only the non-hydrogen-bonded complex I-3 is trapped. The blue/red shift of the complex OH stretching vibration with respect to the corresponding vibration of CH(3)OH in argon/neon matrixes is explained by the different sensitivity of the complex and monomer vibrations to matrix material. The ab initio calculations performed for the ternary CH(3)OH-CF(4)-Ar systems indicated a negligible effect of an argon atom on the binary complex frequencies.  相似文献   

16.
Observations on a Ne:BF(3) = 400:1 mixture into which a trace of normal or isotopically enriched water had been introduced, codeposited at 4.3 K with a beam of neon atoms that had been excited in a microwave discharge, demonstrate that a pair of absorptions at 1662 cm(-1) and 1722 cm(-1) that were previously assigned to the two boron-isotopic species of BF(3)(+) should be reassigned to a BF(2) stretching fundamental of BF(2)OH(+). The OH stretching fundamental of that product was identified for the first time at 3240 cm(-1). The degenerate BF(3) stretching fundamental of (11)BF(3)(+) appears at an unusually high frequency, 1790 cm(-1), consistent with strong pseudo-Jahn-Teller interaction of that ground-state fundamental with the B?(2)E(') electronic state, as predicted by theory. The recent availability of detailed ab initio and density functional calculations of the vibrational fundamentals of BF(2)(-) and BF(3)(-) facilitates assignment of the infrared absorptions of those two products.  相似文献   

17.
Raman spectroscopy at 298 and 77K has been used to study the structure of likasite, a naturally occurring basic copper(II) nitrate of formula Cu3NO3(OH)5.2H2O. An intense sharp band is observed at 3522 cm(-1) at 298 K which splits into two bands at 3522 and 3505 cm(-1) at 77 K and is assigned to the OH stretching mode. The two OH stretching bands at 3522 and 3505 provide estimates of the hydrogen bond distances of these units as 2.9315 and 2.9028 angstroms. The significance of this result is that equivalent OH units in the 298 K spectrum become two non-equivalent OH units at 77 K suggesting a structural change by cooling to liquid nitrogen temperature. A number of broad bands are observed in the 298 K spectrum at 3452, 3338, 3281 and 3040 cm(-1) assigned to H2O stretching vibrations with estimates of the hydrogen bond distances of 2.8231, 2.7639, 2.7358 and 2.6436 angstroms. Three sharp bands are observed at 77 K at 1052, 1050 and 1048 cm(-1) attributed to the nu1 symmetric stretching mode of the NO3 units. Only a single band at 1050 cm(-1) is observed at 298 K, suggesting the non-equivalence of the NO3 units at 77 K, confirming structural changes in likasite by cooling to 77 K.  相似文献   

18.
The mineral rhodonite an orthosilicate has been characterised by Raman spectroscopy. The Raman spectra of three rhodonites from Broken Hill, Pachapaqui and Franklin were compared and found to be similar. The spectra are characterised by an intense band at around 1000 cm(-1) assigned to the nu(1) symmetric stretching mode and three bands at 989, 974 and 936 cm(-1) assigned to the nu(3) antisymmetric stretching modes of the SiO(4) units. An intense band at around 667 cm(-1) was assigned to the nu(4) bending mode and showed additional bands exhibiting loss of degeneracy of the SiO(4) units. The low wave number region of rhodonite is complex. A strong band at 421.9 cm(-1) is attributed to the nu(2) bending mode. The spectra of the three rhodonite mineral samples are similar but subtle differences are observed. It is proposed that these differences depend upon the cationic substitution of Mn by Ca and/or Fe(2+) and Mg.  相似文献   

19.
Severcan F  Toyran N  Kaptan N  Turan B 《Talanta》2000,53(1):55-59
Diabetes mellitus is characterized by hyperglycemia, a relative lack of insulin. The metabolic disturbances in diabetic patients are often associated with cardiac and liver dysfunctions. Generally, experimental diabetic models in animals have been used to study diabetes-related changes in organ function, but the complexity of intact tissues can cause contradictory results. For this reason, different techniques have been used to understand the mechanisms of these dysfunctions in diabetic organs. The purpose of the present study is to investigate the effects of streptozotocin (STZ)-induced diabetes on rat liver and heart tissues at the molecular level by Fourier Transform Infrared (FTIR) spectroscopy. Wistar rats of both sexes, weighing 200-250 g, were made diabetic by a single injection of 50 mg kg(-1) intraperitoneal (i.p.) streptozotocin dissolved in 0.05 M citrate buffer (pH 4.5) and they were kept for 4-5 weeks. The diabetes status was checked by measuring the blood glucose level. In the complex FTIR spectra, the bands in the CH region for example the CH(2) antisymmetric and symmetric stretching, the CH(3) symmetric and asymmetric stretching vibrations due to lipids and proteins in the 3000-2800 cm(-1) region and CH(2) scissoring around 1464 cm(-1) and the CH(3) scissoring at 1454 cm(-1) were analyzed. Characteristic spectral bands of these diabetic samples were compared with those of control group to confirm the effect of diabetes on liver and heart tissues. The FTIR spectra revealed dramatic differences in the band positions and bandwidths, signal intensity values and signal intensity ratios between diabetic and control tissues. Similar differences were observed for diabetic liver and heart tissues. A significant increase in the bandwidth of the CH(2) symmetric and antisymmetric stretching and the CH(3) symmetric and asymmetric stretching bands has been observed for both tissue types. The wavenumber of the CH(3) asymmetric stretching band shifts to lower values, indicating an increase in the order in the deep interior part of the lipid chains. The ratio of the CH(2) symmetric to CH(3) symmetric stretching band (lipid/protein ratio) decreases by 13% for diabetic heart and liver tissues. A decrease is also detected in the ratio of the CH(2) scissoring to the CH(3) scissoring mode. The overall intensity of these bands is seen to increase for diabetic tissues.  相似文献   

20.
Raman spectroscopy was used to study structural changes, in particular, the formation of contact-ion pairs in supersaturated aqueous NaCH(3)COO and Mg(CH(3)COO)(2) droplets at ambient temperatures. The single droplets levitated in an electrodynamic balance (EDB), lost water, and became supersaturated when the relative humidity (RH) decreased. For NaCH(3)COO droplet the water-to-solute molar ratio (WSR) was 3.87 without solidification when water molecules were not enough to fill in the first hydration layer of Na(+), in favor of the formation of contact-ion pairs. However, the symmetric stretching vibration band (nu(3) mode) of free -COO(-) constantly appeared at 1416 cm(-1), and no spectroscopic information related to monodentate, bidentate, or bridge bidentate contact-ion pairs was observed due to the weak interactions between the Na(+) and acetate ion. On the other hand, the band of methyl deformation blue shifted from 1352 to 1370 cm(-1) (at RH = 34.2%, WSR = 2.43), corresponding to the solidification process of a novel metastable phase in the highly supersaturated solutions. With further decreasing RH, a small amount of supersaturated solution still existed and was proposed to be hermetically covered by the metastable phase of the particle. In contrast, the interaction between Mg(2+) and acetate ion is much stronger. When WSR decreased from 21.67 to 2.58 for the Mg(CH(3)COO)(2) droplet, the band of C-C-symmetric stretching (nu(4) mode) had a blue shift from 936 to 947 cm(-1). The intensity of the two new shoulders (approximately 1456 and approximately 1443 cm(-1)) of the nu(3) band of free -COO(-) at 1420 cm(-1) increased with the decrease of WSR. These changes were attributed to the formation of contact-ion pairs with bidentate structures. In particular, the small frequency difference between the shoulder at approximately 1443 cm(-1) and the nu(3) band of the free -COO(-) group (approximately 1420 cm(-1)) was proposed to be related to the formation of a chain structure based on the contact-ion pairs of bridge bidentate. The continuous formation of various contact-ion pairs started at higher WSR value (WSR = 15.5) greatly reduced the hygroscopic properties of Mg(CH(3)COO)(2) droplet, so that the WSR of Mg(CH(3)COO)(2) droplets was even lower than that of NaCH(3)COO in the RH range of 40-60%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号