首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4—5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

2.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

3.
We study the phase diagram of two-flavor QCD at imaginary chemical potentials in the chiral limit. To this end we compute order parameters for chiral symmetry breaking and quark confinement. The interrelation of quark confinement and chiral symmetry breaking is analyzed with a new order parameter for the confinement phase transition. We show that it is directly related to both the quark density as well as the Polyakov loop expectation value. Our analytical and numerical results suggest a close relation between the chiral and the confinement phase transition.  相似文献   

4.
《Nuclear Physics A》1998,637(3):451-465
We investigate the influence of medium effects on the structure of hybrid stars, i.e. neutron stars possessing a quark matter core. We found that medium effects in quark matter reduce the extent of a pure quark matter phase in the interior of a hybrid star significantly in favor of a mixed phase of quark and hadronic matter. Over a wide range of the strong coupling constant — which parameterizes the influence of medium effects — quark matter is able to exist at least in a mixed phase in the interior of neutron stars.  相似文献   

5.
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.  相似文献   

6.
7.
8.
We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post-bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central protoneutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2M ?? pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.  相似文献   

9.
Properties of hybrid stars with a mixed phase composed of asymmetric nuclear matter and strange quark matter are studied. The quark phase is investigated by the quark quasiparticle model with a self-consistent thermodynamic and statistical treatment. We present the stability windows of the strange quark matter with respect to the interaction coupling constant versus the bag constant. We find that the appearance of the quark–hadron mixed phases is associated with the meta-stable or unstable regions of the pure quark matter parameters. The mass–radius relation of the hybrid star is dominated by the equation of state of quark matter rather than nuclear matter. The contour plots of the maximum mass of the hybrid star are shown in the plane of the coupling constant and the bag constant.  相似文献   

10.
The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (“ISB”). For a reasonable strength for the effective four-Fermi current–current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the “ISB” phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust.  相似文献   

11.
In this paper we construct a lattice formulation of the pure gauge fields on a coset space in the cases of a group G with non-trivial topological property and of a chiral group G, and present a local gauge invariant action of a quark system on a four-dimensional Euclidean space lattice, which has the continuum limit as usual. For non-chiral group with trivial topological property, it is shown that the coset pure gauge fields have no influence on the confinement properties of the confinement properties of the quark system by calculating lattice current-current propagator when the coset pure gauge fields remain manifest.  相似文献   

12.
We propose to use a suitably defined vortex free energy as a disorder parameter in gauge field theories with matter fields. It is supposed to distinguish between the confinement phase, massless phase(s) and Higgs phase where they exist. The matter fields may transform according to an arbitrary representation of the gauge group. We compute the vortex free energy by series expansion for a Z2 Higgs model and for SU(2) lattice models with quark or Higgs fields in the fundamental representation at strong coupling (confinement phase), and for the Z2 Higgs model in the range of validity of low-temperature expansions (Higgs phase). The results are in agreement with the expected behavior.  相似文献   

13.
We consider the 4-dimensionalq-state pure gauge Potts model. Forq large enough, we give a new proof of the existence of a unique coupling constant β t , where a first order phase transition occurs. Moreover we prove the following new results: The string tension is discontinuous at β t , the Wilson parameter exhibits at β t a direct transition from an area law decay (quark confinement) to a perimeter law decay (quark deconfinement).  相似文献   

14.
15.
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.  相似文献   

16.
《Nuclear Physics A》1996,609(4):537-561
We study some bulk thermodynamical characteristics, meson properties and the nucleon as a baryon-number-one soliton in hot quark matter in the NJL model as well as in hot nucleon matter in a hybrid NJL model in which the Dirac sea of quarks is combined with a Fermi sea of nucleons. In both cases, working in the mean-field approximation, we find a chiral phase transition from the Goldstone to the Wigner phase. At finite density the chiral order parameter and the constituent quark mass have a non-monotonic temperature dependence — at finite temperatures not close to the critical one they are less affected than in cold matter. Whereas quark matter is rather soft against thermal fluctuations and the corresponding chiral phase transition is smooth, nucleon matter is much stiffer and the chiral phase transition is very sharp. The thermodynamical variables show large discontinuities which is an indication for a first-order phase transition. We solve the B = 1 solitonic sector of the NJL model in the presence of external hot quark and nucleon media. In the hot medium at intermediate temperature the soliton is more bound and less swelled than in the case of cold matter. At some critical temperature, which for nucleon matter coincides with the critical temperature for the chiral phase transition, we find no more a localized solution. According to this model scenario one should expect a sharp phase transition from nucleon to quark matter.  相似文献   

17.
We study phase transitions in the lattice version of the abelian Higgs model, a model which can exhibit both spontaneous symmetry breaking and confinement. When the Higgs charge is the basic U(1) unit, we find that the Higgs and confinement regions are not separated by a phase transition and form a single homogenous phase which we call the total screening phase. The model does not undergo a symmetry restoring phase transition at finite temperature.If the Higgs charge is some multiple of the basic unit the model follows the conventional wisdom: there are 3 phases (normal, Higgs and confinement) at zero temperature, two of which disappear above some critical point. We apply the lessons learned from the lattice Higgs model to understand the behavior of the weak interactions at high temperature.In a long appendix we give an intuitive physical picture for the Polyakov-Susskind quark liberating phase transition and show that it is related to the Hagedorn spectrum of a confining model. We end with a collection of effective field theory approximations to various lattice theories.  相似文献   

18.
The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark mass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.  相似文献   

19.
K- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EXO0748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913+16. But if the recent inferred massive star among Terzan 5 with M>1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.  相似文献   

20.
We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)~Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号