首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The reduction of the (1,3-diformylindenyl)cyclopentadienylruthenium derivatives {η5-1,3-(CHO)2C9H5}RuCp (Cp = C5H5), {η5-1,3-(CHO)2C9H5}RuCp* (Cp* = C5Me5), and {η5-1,3-(CHO)2C9H5}RuCpF (CpF = C5Me4CF3) with NaBH4 or LiAlH4 under mild conditions affords the [1,3-bis(hydroxymethyl)indenyl]cyclopentadienylruthenium complexes {η5-1,3-(CH2OH)2C9H5}RuCp, {η5-1,3-(CH2OH)2C9H5}RuCp*, and {η5-1,3-(CH2OH)2C9H5}-RuCpF, respectively, in good yields.  相似文献   

2.
The reaction of the divalent ruthenium complexes [CpFRuCl]n and [CpFRu(MeCN)3]PF6 with substituted pentafulvenes 1,2-(Me2NCH)(CO2Et)C5H3 and 1,3-(Me2NCH)(CO2Et)- C5H3 followed by hydrolysis affords new homoannular disubstituted ruthenocenes {1,2- (CO2Et)(CHO)C5H3}RuCpF and {1,3-(CO2Et)(CHO)C5H3}RuCpF (CpF = C5Me4CF3), re- spectively.  相似文献   

3.
The crystal and molecular structures of the title compound, the first for a complex of the type [RuCp*(η6‐C8‐ring)]+, is presented, the material being obtained serendipitously from a reaction between RuCl(cod)Cp* and 1‐ferrocenylbuta‐1,3‐diyne in the presence of ZnCl2. <Ru‐C(Cp*)> (2.21 Å) is appreciably longer than in RuCp*2 (2.18 Å) and similar to the value for the Ru‐η6 component (2.22 Å).  相似文献   

4.
Niobium and Tantalum Complexes with P2 and P4 Ligands The photolysis of [Cp″Ta(CO)4] 1 (Cp″ = C5H3tBu2?1,3) and P4 affords Cp″(CO)2Ta(η4?P4) 2 , [{Cp″(CO)Ta}2(m??η2:2?P2)2] 3 and [Cp3″(CO)3Ta3(P2)2] 4 . In a photochemical reaction 2 and [Cp*Nb(CO)4] 5 form [{Cp*(CO)Nb}{Cp″(CO)Ta}(m??η2:2?P2)2] 6 and [{Cp*(CO)2Nb} {Cp*Nb}{Cp″(CO)Ta}(m?32:1:1?P2)2] 7 , a compound with the novel m?32:2:1?P2-coordination mode. The reaction of 2 and [Cp*Co(C2H4)2] 8 leads to [{Cp*Co} {Cp″(CO)Ta}(m??η2:2?P2)2] 9 , a heteronuclear complex with an ?early”? and a ?late”? transition metal. Complexes 2, 3, 7 and 9 have been further characterized by X-ray structure analyses.  相似文献   

5.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

6.
Synthesis and Insertion Reactions of Cp2′HfCl{As(SiMe3)2} (Cp′ = C5H4Me) The reaction of Cp2′HfCl2 (Cp′ = C5H4Me) with Li(THF)2,5As(SiMe3)2 (1 : 1) at room temperature gives the terminal hafnocene arsenido complex Cp2′HfCl{As(SiMe3)2} ( 1 ) in high yield. 1 inserts CS2 and PhNC into the Hf? As bond yielding Cp2′HfCl{η2-S2CAs(SiMe3)2} ( 2 ) and Cp2′HfCl{η2-N(Ph)CAs(SiMe3)2} ( 3 ). The thermally sensitive complexes 1–3 were characterised spectroscopically and crystal structure determinations were carried out on 1 and 3 which shows the η2 bonding mode of the N(Ph)CAs(SiMe3)2 ligand in the latter.  相似文献   

7.
Complexes of Titanium — Synthesis, Structure, and Fluxional Behaviour of CpTi{η6‐C5H4=C(p‐Tol)2}Cl (Cp′ = Cp*, Cp) The reaction of Cp′TiCl3 (C′ = Cp* or Cp) with magnesium and 6, 6‐di‐para‐tolylpentafulvene generates good yields of pentafulvene complexes Cp*Ti{η6‐C5H4=C(p‐Tol)2}Cl ( 4 ) and CpTi{η6‐C5H4=C(p‐Tol)2}Cl ( 5 ), respectively. The crystal and molecular structure of 4 have been determined from X‐ray data and exhibits compared to known η6‐pentafulvene complexes an unusual large Ti—C(p‐Tol)2 (Fv)‐distance (2.535(5)Å) evoked by the bulky substituents at the exocyclic carbon. Dynamic 1H‐NMR and spin saturation transfer experiments point out a rotation of the fulvene ligand around the Ti—Ct2 axis (Ct2 = centroid of the fulvene ring carbon atoms) with an activation barrier ΔGC = 60.6 ± 0.5 kJ mol−1 (TC = 314 ± 2 K). For 5 this barrier is significantly larger. Analogous dynamic behaviour is well known for diene complexes, but to our knowledge, it is here first‐time described for a pentafulvene complex.  相似文献   

8.
Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)][BF4] (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne generates the unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. A possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] is suggested. Graphical Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne simply generates unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. And the possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] was suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The reaction of the neutral carborane C2B9H13 with Cp*M(CH3)3 (M = Zr (a), Hf (b); Cp* = η5-C5Me5) yields [Cp(C2B9H11)M(CH3)]n (3a, b). Complexes 3a, b form THF adducts Cp*(C2B9H11)M(CH3)(THF) 4, insert 2-butyne to yield Cp*(C2B9H11)M{C(Me=CMe2} 5, and undergo methane elimination upon thermolysis to yield methylene-bridged complexes [Cp*(C2B9H11)M]2(μ-CH2) (6). These chemical studies, and companion structural and theoretical studies establish that 3a, b are neutral analogues of the cationic Cp2M(R)+ species (1; Cp = η5-C5H5) and Cp2M(R)(L)+ (2) which are believed to be active in Cp2MX2-based Ziegler catalysts. Despite the lower metal charge, 3–6 exhibit characteristic “electrophilic metal alkyl” properties including agostic M-H-C and M-H-B interactions, high insertion and intramolecular C-H activation reactivity, and high ethylene polymerization and propene oligomerization activity. These observations suggest that the key requirement for high insertion/polymerization activity in metallocene systems is high metal unsaturation (i.e. two empty metal-centered orbitals) rather than charge.  相似文献   

10.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The homoleptic 1,3-diphosphacyclobutadiene sandwich complex [Co(η4-1,3-P2C2tBu2)2] behaved as a versatile and highly flexible metalloligand toward Ni2+, Ru2+, Rh+, and Pd2+ cations, forming a range of unusual oligonuclear compounds. The reaction of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Ni2Cp3]BF4 initially afforded the σ-complex [CpNi{Co(η4-1,3-P2C2tBu2)2}(thf)] ( 2 ), which converted into [Co(η4-CpNi{1,3-P2C2tBu2PC})(η4-1,3-P2C2tBu2)] ( 3 ) below room temperature. The structure of 3 contains an unprecedented 1,4-diphospha-2-nickelacyclopentadiene moiety formed by an oxidative addition of a ligand P−C bond onto nickel. At elevated temperatures, 3 isomerized to [Co(η4-CpNi{1,4-P2C2tBu22P,P})(η4-1,3-P2C2tBu2)] ( 4 ), which features a 1,3-diphospha-2-nickelacyclopentadiene unit. Transmetalation of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Cp*RuCl]4 (Cp*=C5Me5) afforded tetranuclear [(Cp*Ru)3(μ-Cl)2{Co(η4-1,3-P2C2tBu2)2}] ( 5 ), in which the [Co(η4-1,3-P2C2tBu2] anion acts as a chelate ligand toward Ru2+. The diphosphido complex [(Cp*Ru)2(μ,η2-P2)(μ,η2-C2tBu2)] ( 6 ) was formed as a byproduct. Pure compound 6 was isolated after prolonged heating of the reaction mixture. The reaction of [K(thf)2{Co(η4-1,3-P2C2R2)2}] (R=tBu; adamantyl, Ad) with [RhCl(cod)]2 (cod=1,5-cyclooctadiene) afforded unprecedented π-complexes [Rh(cod){Co(η4-1,3-P2C2R2)2}] ( 7 : R=tBu; 8 : R=Ad), in which one μ:η44-P2C2R2 ligand bridges two metal atoms. The pentanuclear complex [Pd3(PPh3)2{Co(η4-1,3-P2C2tBu2)2}2] ( 10 ), featuring a Pd3 chain and a rare 1,4-diphospha-2-butene ligand, was synthesized by reacting [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with cis-PdCl2(PPh3)2. The redox properties of selected compounds were analyzed by cyclic voltammetry, whereas DFT calculations gave additional insight into the electronic structures. The results of this study revealed several remarkable and previously unrecognized properties of the [Co(P2C2tBu2)2] anion.  相似文献   

12.
The catalytic activities of the highly fluorous systems formed by the zirconocene(IV) complexes [Zr{η5-C5H4SiMe2C2H4RF}2Cl2] (RF = C6F13 (4a), C10F21 (4b)) or [Zr-{η5-C5H3(SiMe2C2H4C6F13)2}2Cl2] (5a) and MMAO in toluene have been studied and compared with analogous nonfluorous systems generated from [Zr{η5-C5H4SiMe3}2Cl2] and [Zr{η5-C5H5}2Cl2]. Although less active than the reference systems, the fluorous catalysts are stable over prolonged polymerization times, giving rise to polymers with similar molecular weights to those obtained with [Zr{η5-C5H4SiMe3}2Cl2].  相似文献   

13.
The redox chemistry of the heterobimetallic triple-decker complexes [(Cp*Fe)(Cp′′′Co)(μ,η54-E5)] (E=P ( 1 ), As ( 2 ), Cp*=1,2,3,4,5-pentamethyl-cyclopentadienyl, Cp′′′=1,2,4-tri-tertbutyl-cyclopentadienyl) and [(Cp′′′Co)(Cp′′′Ni)(μ,η33-E3)] (E=P ( 10 ), As ( 11 )) was investigated. Compound 1 and 2 could be oxidized to the monocations 3 and 4 and further to the dications 5 and 6 , while the initially folded cyclo-E5 ligand planarizes upon oxidation. The reduction leads to an opposite change in the geometry of the middle deck, which is now folded stronger into the direction of the other metal fragment (formation of monoanions 7 and 8 ). For the arsenic compound 8 , a different behavior is found since a fragmentation into an As6 ( 9 ) and As3 ligand complex occurs. The Co and Ni triple-decker complexes 10 and 11 can be oxidized initially to the heterometallic monocations 12 and 13 , which are not stable in solution and convert selectively into the homometallic nickel complexes 14 and 15 and the cobalt complexes 16 and 17 . This behavior was further proven by the oxidation of [(Cp′′′Co)(Cp′′Ni)(μ,η32-P3)] ( 19 , Cp′′=1,3-di-tertbutyl-cyclopentadienyl) comprising two different Cp ligands. The transfer of {CpRM} fragments can be suppressed when a {W(CO)5} unit is coordinated to the P3 ligand ( 20 ) prior to the oxidation and the mixed cobalt and nickel cation 21 can be isolated. The reduction of 10 and 11 yields the heterometallic monoanions 22 and 23 , where no transfer of the {CpRM} fragments is observed.  相似文献   

14.
The reactivity of ruthenium and manganese complexes bearing intact white phosphorus in the coordination sphere was investigated towards the low-valent transition-metal species [Cp′′′Co] (Cp′′′=η5-C5H2-1,2,4-tBu3) and [L0M] (L0=CH[CHN(2,6-Me2C6H3)]2; M=Fe, Co). Remarkably, and irrespective of the metal species, the reaction proceeds by the selective cleavage of two P–P edges and the formation of a square-planar cyclo-P4 ligand. The reaction products [{CpRu(PPh3)2}{CoCp′′′}(μ,η1:4-P4)][CF3SO3] ( 5 ), [{CpBIGMn(CO)2}2{CoCp′′′}(μ,η1:1:4-P4)] ( 6 ) and [{CpBIGMn(CO)2}2{ML0}(μ,η1:1:4-P4)] (CpBIG=C5(C6H4nBu)5; L0=CH[CHN(2,6-Me2C6H3)]2; M=Fe ( 7 a ), Co ( 7 b )), respectively, were fully characterized by single-crystal X-ray diffraction and spectroscopic methods. The electronic structure of the cyclo-P4 ligand in the complexes 5 – 7 is best described as a π-delocalized P42− system, which is further stabilized by two and three metal moieties, respectively. DFT calculations envisaged a potential intermediate in the reaction to form 5 , in which a quasi-butterfly-shaped P4 moiety bridges the two metals and behaves as an η3-coordinated ligand towards the cobalt center.  相似文献   

15.
NMR studies of reactions between a series of arene ruthenium(II) fluoroarylphosphine complexes and Proton Sponge have revealed the necessary conditions for intramolecular dehydrofluorinative ligand coupling. The complex must be cationic, and the phosphine need have only one fluoroaryl substituent. The reaction is rapid and clean for [(η6-toluene)RuCl(dfppe)]BF4, [(η6-mesitylene)RuCl{(C6F5)2PC6H4SMe}]BF4 and the diastereomer of [(η6-toluene)RuCl{Ph2PC2H4PPh(C5F4N-4)}]BF4 in which the tetrafluoropyridyl substituent is close to the η6-arene. [(η6-p-cymene)RuCl(dfppe)]BF4 reacts in the presence of Proton Sponge to give a mixture of unidentified compounds. The neutral complex [(η6-toluene)RuCl2{Ph2P(C6F5)}] and the diastereomer of [(η6-toluene)RuCl{Ph2PC2H4PPh(C5F4N-4)}]BF4 in which the tetrafluoropyridyl substituent is distant to the η6-arene do not undergo reaction.  相似文献   

16.
The synthesis and characterization of the first supramolecular aggregates incorporating the organometallic cyclo‐P3 ligand complexes [CpRMo(CO)23‐P3)] (CpR=Cp (C5H5; 1a ), Cp* (C5(CH3)5; 1b )) as linking units is described. The reaction of the Cp derivative 1a with AgX (X=CF3SO3, Al{OC(CF3)3}4) yields the one‐dimensional (1D) coordination polymers [Ag{CpMo(CO)2(μ,η311‐P3)}2]n[Al{OC(CF3)3}4]n ( 2 ) and [Ag{CpMo(CO)2(μ,η311‐P3)}3]n[X]n (X=CF3SO3 ( 3a ), Al{OC(CF3)3}4 ( 3b )). The solid‐state structures of these polymers were revealed by X‐ray crystallography and shown to comprise polycationic chains well‐separated from the weakly coordinating anions. If AgCF3SO3 is used, polymer 3a is obtained regardless of reactant stoichiometry whereas in the case of Ag[Al{OC(CF3)3}4], reactant stoichiometry plays a decisive role in determining the structure and composition of the resulting product. Moreover, polymers 3a, b are the first examples of homoleptic silver complexes in which AgI centers are found octahedrally coordinated to six phosphorus atoms. The Cp* derivative 1b reacts with Ag[Al{OC(CF3)3}4] to yield the 1D polymer [Ag{Cp*Mo(CO)2(μ,η321‐P3)}2]n[Al{OC(CF3)3}4]n ( 4 ), the crystal structure of which differs from that of polymer 2 in the coordination mode of the cyclo‐P3 ligands: in 2 , the Ag+ cations are bridged by the cyclo‐P3 ligands in a η11 (edge bridging) fashion whereas in 4 , they are bridged exclusively in a η21 mode (face bridging). Thus, one third of the phosphorus atoms in 2 are not coordinated to silver while in 4 , all phosphorus atoms are engaged in coordination with silver. Comprehensive spectroscopic and analytical measurements revealed that the polymers 2 , 3a , b , and 4 depolymerize extensively upon dissolution and display dynamic behavior in solution, as evidenced in particular by variable temperature 31P NMR spectroscopy. Solid‐state 31P magic angle spinning (MAS) NMR measurements, performed on the polymers 2 , 3b , and 4 , demonstrated that the polymers 2 and 3b also display dynamic behavior in the solid state at room temperature. The X‐ray crystallographic characterisation of 1b is also reported.  相似文献   

17.
A DFT study was carried out to investigate the reaction mechanisms of a model μ-benzoquinone diruthenium complex {CpRu(μ-H)}2(μ-η22-C6H4O2), derived from the experimental compound {Cp*Ru(μ-H)}2(μ-η22-C6H3RO2) (R = H or R = Me, Cp* = η5-C5Me5), with acetylene both in aprotic and protic solvents. Results of calculations show that the influence of the solvent methanol on the reaction is mainly on the step of acetylene coordination. Enhanced hydrogen bonding is the reason for acceleration of the reaction in protic solvent, which is supported by NBO charge analysis.  相似文献   

18.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

19.
The reaction of the organometallic diarsene complex [Cp2Mo2(CO)4(μ,η2-As2)] ( B ) (Cp = C5H5) with Ag[FAl{OC6F10(C6F5)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]), respectively, yields three unprecedented supramolecular assemblies [(η2- B )4Ag2][FAl]2 ( 4 ), [(μ,η12- B )32- B )2Ag3][TEF]3 ( 5 ) and [(μ,η12- B )4Ag3][TEF]3 ( 6 ). These products are only composed of the complexes B and AgI. Moreover, compounds 5 and 6 are the only supramolecular assemblies featuring B as a linking unit, and the first examples of [AgI]3 units stabilized by organometallic bichelating ligands. According to DFT calculations, complex B coordinates to metal centers through both the As lone pair and the As−As σ-bond thus showing this unique feature of this diarsene ligand.  相似文献   

20.
The reaction of Cp2Zr(OPri)2 with [H(OEt2)2][H2N{B(C6F5)3}2] in dichloromethane at room temperature gives [Cp2Zr(OPri)(HOPri)]+[H2N{B(C6F5)3}2] · Et2O in high yield. The crystal structure is reported. The complex contains a short Zr-alkoxide and a longer Zr-alcohol bond; the OH group of the coordinated isopropanol is hydrogen-bonded to a diethyl ether molecule. The complex initiates the polymerisation of propylene oxide, most probably via a cationic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号