首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural features of polymeric silicon glycerolate hydrogels based on tetrafunctional silicon glycerolates were investigated using model process, namely, hydrolytic transformation of difunctional silicon glycerolates, by IR and 1H NMR spectroscopy, elemental analysis, atomic emission spectrometry. The possibility of forming a polymer network containing Si—O—Si and Si—OCH2CH(OH)CH2O—Si fragments was demonstrated. The molecular weight of the sub-chains in the network was calculated using Flory—Rehner approach based on the mechanical properties of the swollen network of flexible polymeric chains.  相似文献   

2.
Hydrogels based on n-alkyl methacrylate esters (n-AMA) of various chain lengths, acrylic acid, and acrylamide cross-linked with 4,4-di(methacryloylamino)azobenzene were synthesized. The equilibrium swelling degree of the hydrogels in buffered solutions at pH 7.4 was shown to be very low in the pH range of the stomach. The entire swelling processes of the gels in the gastrointestinal tract were mainly dependent on those in the small intestine. In the buffered solution of pH 7.4 the diffusion of water into the gel slabs was discussed on the stress relaxation model of polymer chains. The results obtained are in good agreement with Schott's second-order diffusion kinetics. The biodegradability in vivo of their azobenzene cross-linking groups as well as the mechanism of degradation by cecal bacteria was studied. The gels are stable in the stomach but degradable by ananerobes present in the colon. The extent of degradation was considerably related to the equilibrium degree of swelling. The factors influencing the swelling degree were shown to influence the in vivo degradation of the gels. By changing these factors such as the degree of cross-linking, the length and content of the n-AMA side chains, it is possible to control both the degree of swelling and the degradation of the hydrogels.  相似文献   

3.
Double network hydrogels (DN gels), consisting of two networks with strongly asymmetric network structures and properties, are one of most investigated high strength hydrogels. In most cases, the first network of DN gels is rigid, brittle and tightly crosslinked, while the second network is soft, ductile and loosely crosslinked. Because of the tunable and diverse network structures, DN gels with controlled shape deformation have attracted great attention in recent years. The shape deformation of DN gels can be controlled by first network, second network, or both networks. In this mini review, the shape deformation of DN gels via different networks will be summarized, and the application and future perspectives also are discussed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1351–1362  相似文献   

4.
Russian Chemical Bulletin - A novel combined bioactive silicon–boron-containing glycerohydrogel was prepared by a sol-gel method with the use of silicon and boron glycerolates as precursors....  相似文献   

5.
Nowadays, there are still many challenges to skin regeneration. As a new type of skin substitute, hydrogel has emerging gradually with its excellent properties. However, it is still a challenge to combine with biological active agents to facilitate skin regeneration. Under the circumstance, we synthesized argininebased poly(ester amide)(Arg-PEA) and hyaluronic acid(HA-MA), and combined them into new hybrid hydrogels via photo-crosslinking. We found that the internal structure and physicochemical...  相似文献   

6.
Non-destructive 14-MeV neutron activation analysis for silicon in steel has been applied with 56Mn as internal standard.56Mn is formed from the iron matrix via the 56Fe(n,p)56Mn reaction. Several methods of internal standardisation via56Mn are discussed. The 0.84-MeV photopeak of 56Mn is recommended if steel samples of about the same composition are to be analysed. Chemically analysed steel samples are used as silicon standards. A precision of 0.7% was obtained for an analysis plus standardisation time of 13 min. Special attention was paid to interferences produced by concentration changes of impurity elements. Several possible sources of errors were investigated.  相似文献   

7.
A new class of polymer hydrogels, nanocomposite hydrogels (NC gels), consisting of a unique organic (polymer)/inorganic (clay) network structure, was synthesized by in situ free-radical polymerization in the presence of exfoliated clay nanoparticles in an aqueous system. The resulting NC gels overcame most of the disadvantages associated with chemically cross-linked hydrogels, such as mechanical fragility, structural heterogeneity, and slow de-swelling rate. By using thermo-sensitive poly(N-isopropylacrylamide) (PNIPA) as a constituent polymer, NC gels with remarkable mechanical, optical, and swelling properties as well as thermo-sensitivity were obtained. The various properties of NC gels, such as transparency, gel volume, cell culturing, and surface friction changed significantly in response to the temperature and surrounding conditions. All the excellent properties and new stimuli-responsive characteristics of NC gels are attributed to the unique PNIPA/clay network structure. The thermo-sensitivities and the transition temperature can largely be controlled by varying the clay content and by the addition of solutes.  相似文献   

8.
Hong Wang 《Talanta》2009,77(5):1864-4296
Fluorescence enhancement of acridine orange (AO) in supramolecular hydrogels formed by self-assembly of the gelators 3-{[(2R)-2-(octadecylamino)-3-phenylpropanoyl]amino}butyrate (TC18PheBu) and 1,3:2,4-di-O-benzylidene-d-sorbitol (DBS) was investigated by steady-state and varying temperature fluorescence, polarized fluorescence and time-resolved fluorescence techniques. The results showed that the fluorescence intensities of AO in the gels remarkably increased in comparison with AO aqueous solutions, and increased with an increase of the gelator concentrations. The varying temperature fluorescence analysis indicated that fluorescence intensities of AO in the gels decreased upon an increase of temperature, and vice versa. This can be attributed to aggregation and dissociation of the gelators in the systems, since the fluorescence enhancement of AO was induced by self-assembly of the gelators. Polarized fluorescence analysis indicated that the values of anisotropy (r) of AO are significantly higher than that in water. This further confirmed that the three-dimensional network formed by the gelator aggregates constrained the rotation of AO entrapped within the gels, resulting in high values of anisotropy. Time-resolved fluorescence analysis indicated that the rates of fluorescence decay in the gels are lower than that in water. These results reveal thermo-reversibility of the fluorescence enhancement of AO in supramolecular hydrogels.  相似文献   

9.
Adjusting the mechanical cues generated in cellular microenvironments is important for manipulating cell behaviour. Here we report on mechanically dynamic hydrogels undergoing directional domain sliding motion and investigate the effect of the well-defined mechanical motion on accelerating cell proliferation. The mechanically dynamic hydrogels were prepared via self-assembly of an amphiphilic peptide consisting of two alternating polar and nonpolar domains cross-linked by disulfide bonds at a nonsymmetrical position. The cross-linked peptide assembled into entangled nanofibers driven by the hydrophobic collapse involving a partial-length sequence due to the covalent constraint. Reduction of the disulfide bonds led to formation of non-equilibrated peptide bilayers, which underwent directional domain sliding motion along each promoted by the thermodynamically favourable transition from the partial to full hydrophobic collapse. The mechanical cues resulting from the directional domain sliding motion within the mechanically dynamic hydrogels accelerated cell proliferation when incubating cells on the hydrogel, compared to the thermodynamically static counterparts, via a mechanotransduction mechanism as supported by the facilitated translocation of yes-associated proteins into the nucleus of the cells. Our finding demonstrates the great potential of mechanically dynamic hydrogels as new-generation biomimetic extracellular matrices in tissue engineering and regeneration.

Dynamic peptide hydrogels undergoing directional domain sliding movement upon release of covalent constraint accelerate cell proliferation through a mechanotransduction pathway.  相似文献   

10.
5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin was entrapped into biocompatible hydrogels formed by self-assembling micelles of the titanium dioxide prepared by hydrolysis of titanium ethoxide modified with triethanolamine (TEA). The materials were characterized by their optical and photosensitive properties. The immobilization led to changes of the absorption spectra of the dye and decreased its molar absorption coefficient. The TiO2 matrix did not degrade the entrapped porphyrin upon u.v. irradiation. The formation of TEA–titanium(IV) chelates facilitated a controlled and triggered release of the immobilized dye from the hydrogels in lactate and citrate buffers. The released dye prolonged the sterility of citrate–phosphate buffer and its illumination with visible light inhibited growth of Aspergillus niger.  相似文献   

11.
The formation of hydrogels from diacylphosphatidylcholine (PC) and water/glycerol mixtures and the properties of the gels are reported. The gels are formed when Lα phases from the PC in the solvent mixtures are cooled from T >55 °C below the Krafft temperature of the PC (T m ∼52 °C). The glycerol can also be replaced by other co-solvents like butylenglycol. Above T m, the PC spontaneously forms Lα phases with multilamellar vesicles that show a strong stationary birefringence. On cooling below Tm, the Lα phases jellify to transparent gels. DSC measurements of the gels show that the PC molecules undergo a phase transition into the crystalline state. This transition does not seem to be accompanied by a change of the morphological structure of the liquid Lα phase. The hydrogels also have a stationary birefringence. The vesicles in the gels have been imaged by the CryoTEM method. The hydrogels are already formed with as little as 1% of PC in the mixed solvent. The rheological properties of the gels were determined from oscillating rheological measurements. Samples with 10% of PC have a storage modulus of >10,000 Pa.  相似文献   

12.
In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules.  相似文献   

13.
The phase transition and critical phenomenon of equilibrium swollen poly(N-isopropylacrylamide) (NIPA) hydrogels were studied by 1H NMR spectroscopy in liquid solution mode. The quantitative NMR observation shows that the peak height and line width of polymer proton and of the HOD proton, and relaxation times of HOD proton all transitionally change as the temperature approaches the transition temperature. The relaxation times of water protons are also measured quantitatively, which shows that the temperature dependence of relaxation times of HOD on temperature before the transition is not consistent with relaxation theory based on the assumption of dominated dipolar interaction between like-spin nuclei and isotropic rotational motion. To explain the surprising relaxation behavior of HOD, we suggest that the amount of bound water in gels increases gradually with temperature at the approach of the phase transition. The pulsed-gradient spin-echo NMR experiments of NIPA gel confirm this suggestion. We believe that these results have important implications concerning the mechanism of the phase transition of NIPA hydrogels.  相似文献   

14.
Modulus of elasticity of highly charged N-isopropylacrylamide (NIPA) based hydrogels (PNIPA) are measured at various swelling degrees in water. The sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) was used as the ionic comonomer of NIPA in the hydrogel preparation. The mole fraction of AMPS in the comonomer feed was varied between 0 and 1, while the crosslinker ratio was fixed at 1/85. The elasticity data show that the equilibrium swollen PNIPA hydrogels are in the non-Gaussian regime. Equations were derived based on the inverse Langevin function for the swelling ratio and the modulus of highly charged PNIPA hydrogels and checked by experiments. Results of calculations show good agreement to the swelling and elasticity data of highly swollen PNIPA gels.  相似文献   

15.
The preparation of SiO2-TiO2 thin films by the sol-gel method using silicic acid and titanium tetrachloride as starting materials was studied. The homogeneous sols were obtained by the condensation reaction of silicic acid with titanium tetrachloride in methanol-tetrahydrofuran. The dipcoating of slide glasses and silicon wafers followed by heat treatment gave oxide thin films of 88–93% transmittance, 3000–4500 Å thickness, and 1.45–1.80 refractive index, depending on heat-treatment temperature and TiO2 content. FT-IR measurement showed that the Si-O-Ti bond is formed even in the sol and films. The variations of film thickness and refractive index on transformation from the gels into the oxides were found to be quite low.  相似文献   

16.
A novel gelation occurs in water during supramolecular self-assemblies of α-cyclodextrins being threaded onto amphiphilic LA-PEG-LA copolymer end-capped with methacryloyl groups. The rheologic studies show that the gels are thixotropic and reversible. While exposed to UV irradiation with a photoinitiator added in advance, they can be photopolymerized in situ to give rise to chemically cross-linked biodegradable hydrogels with the markedly improved mechanical strength. The gels formed prior to and after UV irradiation are characterized using FTIR, 1H NMR, WAXD and TGA techniques. The swelling ratio and in vitro degradation of the photocured hydrogels are also investigated. It appears that both physical and chemical gels have the potential to be used as injectable biomaterials.  相似文献   

17.
Poisson's ratio (μ0) of polyacrylamide (PAAm) gels was estimated. The value of μ0 for PAAm gels was found to be 0.457, which is close to that for poly (vinyl alcohol) (PVA) gels swollen in the mixture of dimethylsulfoxide (DMSO) and water, but is higher than the value for PVA hydrogels.  相似文献   

18.
A simple amphiphilic low-molecular-weight gelator based on L-lysine, Nα-acetyl-Nε-lauroyl-L-lysine (1), its alkali metal salts [Na (2) and K (3)], and two-component gelators [1 and 2 and 1 and 3] were synthesized. Compound 1 had a good hydrogelation ability that formed a pure water gel at 2 g L?1 (0.2 wt.%) and a saline gel at 4 g L?1 (0.4 wt.%). Two-component compounds were able to form hydrogels in aqueous solutions containing alkali metal and alkali earth metal ions in addition to pure water and saline. Although 1 formed organogels in a few organic solvents, two-component compounds also functioned as a good organogelator. The FT-IR study indicated that the driving forces for the formation of supramolecular gels were hydrogen-bonding and hydrophobic interactions. Furthermore, the thermal properties of the hydrogels are discussed.  相似文献   

19.
《Tetrahedron: Asymmetry》2001,12(10):1417-1429
We have investigated a number of nucleophilic additions of allylating reagents to several α,α′,β-trioxygenated ketones (O-protected erythrulose derivatives). Reagents based on lithium, magnesium, copper and titanium gave low to medium stereoselectivities and did not display any recognizable trend in the sense of stereoselection. In contrast, reactions involving silicon and tin derivatives were highly stereoselective and gave rise to essentially a single diastereoisomer, the structure of which depended on the type of protecting group. Thus, α,β-di-O-benzylated derivatives experienced almost exclusive addition to the carbonyl Si side, whereas α,β-O,O-alkylidene derivatives (dioxolane acetals) yielded the opposite diastereoisomers as a result of addition to the Re side. These results suggest the intermediacy of α-chelates in the additions of silicon and tin reagents to the di-O-benzylated derivatives. In contrast, the opposite stereoisomers, formed in the reactions of dioxolanes, are believed to be formed through Felkin–Anh transition states, pointing again to the reluctance of acetal oxygens to participate in chelated intermediates.  相似文献   

20.
Hydrogels were prepared by the cross-linking reactions of carboxymethyl cellulose with di- or polyfunctional glycidyl ether to investigate the effects of different cross-linker’s chain length and the number of epoxy groups on the properties of the gels. Fourier transform infrared spectra showed a new peak at ν = 1,740 cm−1 assigned to the absorption of carbonyl groups in the new ester structure formed by the cross-linking of –COONa with the epoxy compounds. The interior morphology data indicated microporous network structures which correlated with the swelling of hydrogels. The swelling data in water, urea, sucrose, urine and aspartame showed increases in swelling with an increase in chain length of the cross-linker but decreased with the number of epoxy groups on the cross-linker. Collectively, the gels were ionic strength sensitive. The rheology experiments showed that gel point (t gel) increased with the chain length of the cross-linker but reduced with increase in number of epoxy groups on the cross-linker. Dynamic oscillatory measurements indicated stronger material functions in gels prepared with polyfunctional epoxy cross-linkers. The hydrogels prepared with difunctional epoxy groups had higher loading capacity and faster release of bovine serum albumin compared with hydrogels based on polyfunctional epoxy group cross-linkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号