首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New (chalcogenoethyl)ferrocenylcarboxalate functionalized silver chalcogenide nanoclusters were synthesized using a combination of silylated chalcogen reagents at low temperatures. The addition of E(SiMe(3))(2) to reaction mixtures of FcC{O}OCH(2)CH(2)ESiMe(3) (E = S, Se) and (Ph(3)P)(2)·AgOAc affords nanoclusters with approximate molecular formulas [Ag(36)S(9)(SCH(2)CH(2)O{O}CFc)(18)(PPh(3))(3)] (1), [Ag(100)Se(17)(SeCH(2)CH(2)O{O}CFc)(66)(PPh(3))(10)] (2), and [Ag(180)Se(54)(SeCH(2)CH(2)O{O}CFc)(72)(PPh(3))(14)] (3) as noncrystalline solids. Compositions were formulated on the basis of elemental analysis, high resolution transmission electron microscopy, and dynamic light scattering experiments. Solutions of these polyferrocenyl assemblies display a single quasi-reversible redox wave with some adsorption to the electrode surface as studied by cyclic voltammetry. With the smaller clusters 1, the addition of [Bu(4)N][HSO(4)] results in a shift of the reduction wave to less positive potentials than those of the complex in the absence of these oxoanions. No further shift is observed after the addition of approximately 1 equivalent of HSO(4)(-)/ferrocene branch. Cyclic voltammograms of the larger clusters 2 and 3 show the appearance of a new, irreversible wave at less positive potentials than the initial wave upon the addition of HSO(4)(-). The appearance of this new wave together with the disappearance of the reduction wave indicates a stronger interaction between the nanoclusters and the hydrogen sulfate anion.  相似文献   

2.
The ferrocene-based trimethylsilyl chalcogenide reagents [FcC(O)OCH(2)CH(2)ESiMe(3)] (2, E=S, 3 E=Se, Fc=[Fe(η(5)-C(5)H(5))(η(5)-C(5)H(4))]) and [FcC(O)NHCH(2)CH(2) SSiMe(3)] (8b) have been synthesized. The reagents were reacted with solubilized transition-metal acetates to yield functionalized complexes and clusters, including the spherical nanocluster [Ag(14)S{SCH(2)CH(2)O(O)CFc)}(12)(PPh(3))(6)] (11, PPh(3) =triphenylphosphine). The complexes were characterized by NMR spectroscopy and X-ray crystallography. The electrochemical behavior of the complexes was explored by cyclic voltammetry and each displayed a single quasi-reversible redox wave with some adsorption to the electrode surface.  相似文献   

3.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

4.
The reaction of the unsymmetrical ligands 1-diphenylphosphino-1'-(phenylsulfanyl)ferrocene and 1-diphenylphosphino-1'-(phenylselenyl)ferrocene, Fc(EPh)PPh2(E = S, Se), with several group 11 metal derivatives leads to the synthesis of complexes of the type [MX{Fc(EPh)PPh2}](M = Au, X = Cl, C6F5; M = Ag, X = OTf), (OTf = trifluoromethanesulfonate), [M{Fc(EPh)PPh2}2]X (M = Au, X = ClO4; M = Ag, X = OTf), [M(PPh3){Fc(EPh)PPh2}]OTf (M = Au, Ag), [Au2{Fc(SPh)PPh2}2](ClO4)2, [Au(C6F5)2{Fc(SePh)PPh2}]ClO4, [Au(C6F5)3{Fc(EPh)PPh2}], [Au2(C6F5)6{Fc(SePh)PPh2}] or [Cu{Fc(EPh)PPh2}2]PF6(E = S, Se). In these complexes coordination depends upon the metal centre; with gold it takes place predominantly to the phosphorus atom and with silver and copper to both phosphorus and chalcogen atoms. The treatment of some of the gold complexes with other metal centres affords heterometallic derivatives that in some cases are in equilibrium with the homometallic derivatives. Several compounds have been characterized by X-ray diffraction, four pairs of homologous compounds, yet not a single pair is isotypic. In many of them a three dimensional network is formed through secondary bonds such as hydrogen bonds, Au...Cl or Au...Se interactions. The complex [Ag(OTf){Fc(SePh)PPh2}] forms one-dimensional chains through trifluoromethanesulfonate bridging ligands.  相似文献   

5.
A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar=aryl; E=S, Se; n=2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M=Na, Li). These represent the first examples of the incorporation of such a large number of reactive ?ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno‐ and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4‐(Me3SiECH2)2(C6Me4) (E=S, 1 ; E=Se, 2 ), 1,3,5‐(Me3SiECH2)3(C6Me3) (E=S, 3 ; E=Se, 4 ) and 1,2,4,5‐(Me3SiECH2)4(C6H2) (E=S, 5 ; E=Se, 6 ) and the polyferrocenyl chalcogenoesters [1,4‐{FcC(O)ECH2}2(C6Me4)] (E=S, 7 ; E=Se, 8 ), [1,3,5‐{FcC(O)ECH2}3(C6Me3)] (E=S, 9 ; E=Se, 10 ) and [1,2,4,5‐{FcC(O)ECH2}4(C6H2)] (E=S, 11 illustrated; E=Se, 12 ) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy (1H, 13C, 77Se), electrospray ionization mass spectrometry and, for complexes 1 , 2 , 3 , 4 , 7 , 8 , and 11 , single‐crystal X‐ray diffraction. The cyclic voltammograms of complexes 7 – 11 are presented.  相似文献   

6.
The reaction of [AuCl(P-N)], in which P-N represents a heterofunctional phosphine ligand, with pentafluorothiophenol, HSC(6)F(5), gives the thiolate gold derivatives [Au(SC(6)F(5))(P-N)] (P-N = PPh(2)py (1), PPh(2)CH(2)CH(2)py (2), or PPhpy(2) (3)). Complex [Au(SC(6)F(5))(PPh(2)py)] (1) reacts with [Au(OTf)(PPh(2)py)] in a 1:1 or 1:2 molar ratio to afford the di- or trinuclear species [Au(2)(μ-SC(6)F(5))(PPh(2)py)(2)]OTf (4) and [Au(3)(μ(3)-SC(6)F(5))(PPh(2)py)(3)](OTf)(2) (5), with the thiolate acting as a doubly or triply bridging ligand. The reactivity of the mononuclear compounds [Au(SC(6)F(5))(P-N)] toward silver or copper salts in different ratios has been investigated. Thus, the treatment of [Au(SC(6)F(5))(P-N)] with Ag(OTf) or [Cu(NCMe)(4)]PF(6) in a 1:1 molar ratio gives complexes of stoichiometry [AuAg(OTf)(μ-SC(6)F(5))(P-N)] (P-N = PPh(2)py (6), PPh(2)CH(2)CH(2)py (7), or PPhpy(2) (8)) or [AuCu(μ-SC(6)F(5))(P-N)(NCMe)]PF(6) (P-N = PPh(2)py (9), PPh(2)CH(2)CH(2)py (10), or PPhpy(2) (11)). These complexes crystallize as dimers and display different coordination modes of the silver or copper center, depending on the present functionalized phosphine ligand. The treatment of [Au(SC(6)F(5))(PPh(2)py)] with silver and copper compounds in other molar ratios has been carried out. In a 2:1 ratio, the complexes [Au(2)M(μ-SC(6)F(5))(2)(μ-PPh(2)py)(2)]X (M = Ag, X = OTf (12); M = Cu, X = PF(6) (13)) are obtained. The same reaction in a 4:3 molar ratio affords the species [Au(4)M(2)(μ-SC(6)F(5))(3)(μ-PPh(2)py)(4)]X(3) (M = Ag, X = OTf (14); M = Cu, X = PF(6) (15)). The crystal structures of some of these complexes reveal different interactions among the metallic d(10) centers. The complexes display dual emission. The band at higher energy has been attributed to intraligand (IL) transitions, and the one at lower energy has been assigned to a ligand to metal (LM) charge transfer process. The latter emission is modulated by the heterometal (silver or copper).  相似文献   

7.
The [2 + 3] cycloaddition reactions (which are greatly accelerated by microwave irradiation) of the di(azido)platinum(II) compounds cis-[Pt(N(3))(2)(PPh(3))(2)] (1) with cyanopyridines NCR (2) (R = 4-, 3-, and 2-NC(5)H(4)) give the corresponding bis(pyridyltetrazolato) complexes trans-[Pt(N(4)CR)(2)(PPh(3))(2)] (3) [R = 4-NC(5)H(4) (3a), 3-NC(5)H(4) (3b), and 2-NC(5)H(4) (3c)]. Compound 3c has been characterized as the N(1)N(2)-bonded isomer in the solid state by X-ray crystallography and represents the first bis(tetrazolato) complex of this kind. Complexes 3a and 3b have been used as metallaligands to generate heteronuclear coordination polymers in the presence of copper nitrate. A one-dimensional supramolecular architecture was obtained as the exclusive product, {trans-[Pt(2)(N(4)CR)(4)(PPh(3))(4)Cu](n)(NO(3))(2n).nH(2)O (4.nH(2)O) (R = 4-NC(5)H(4)), when 3a was employed, whereas with 3b the heteronuclear square complex trans-[Pt(N(4)CR)(2)(PPh(3))(2)Cu(NO(3))(2)(H(2)O)](2) (5) (R = 3-NC(5)H(4)), composed of Pt/Cu ions, was obtained. All the isolated complexes were characterized by IR, elemental, and (for 3b, 3c, 4, and 5) X-ray structural analyses. Complexes 3 were additionally characterized by (1)H, (13)C, and (31)P {(1)H} NMR spectroscopies.  相似文献   

8.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

9.
An improved synthesis of lithium phenyltris(methimazolyl)borate, Li[PhTm(Me)], (methimazole = 1-methylimidazole-2-thione) is described, and the structure of the methanol-solvated [Li(OHMe)4][PhTm(Me)] has been determined. The syntheses and characterization of complexes [M(PhTm(Me))(PR3)] (M = Cu, Ag, Au; R = Et, Ph;) are reported, and the complexes [Cu(PhTm(Me))(PPh3)], [Ag(PhTm(Me))(PEt3)] and [Au(PhTm(Me))(PEt3)] are crystallographically characterized, showing a progression from pseudo-tetrahedral geometry (copper, S3P coordination) to trigonal planar geometry (silver, S2P coordination) to linear geometry (gold, SP coordination). In addition, the copper(I) and silver(I) triphenylphosphine complexes of the adventitiously formed phenylhydrobis(methimazolyl)borate ligand, [M(PhBm(Me))(PPh3)], have been crystallographically characterized, showing both species to have a trigonal planar primary coordination sphere, with a secondary M...H-B interaction. Finally, reaction of copper(II) chloride with Li[PhTm(Me)] results in formation of a compound analyzing as [Cu(II)(PhTm(Me))Cl], although its extreme insolubility and marked instability have precluded its complete characterization. Attempts to prepare this by ultra-slow diffusion of the reactants through solvent blanks has led to isolation of a mixed-valence copper(I/II) methimazolate cluster, [Cu(I)10Cu(II)2(mt)12Cl2] and a copper(I) dimeric complex [Cu2(PhTm(Me))2], indicating that copper(II) ions oxidatively decompose the phenyltris(methimazolyl)borate anion.  相似文献   

10.
2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu?:?PPh(3)?:?Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) ?; 3, Cu-Br, 2.391(1), 3.111(1) ?}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) ?}, more than twice the van der Waals radius of a Cu atom, 2.80 ?. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal.  相似文献   

11.
The tetrahydrofuran adducts [(thf)(4)M(PPh(2))(2)] (M = Ca, Sr) are air sensitive and can easily be oxidized by chalcogens. Metalation of diphenylphosphane oxide, diphenylphosphinic acid, and diphenyldithiophosphinic acid as well as salt metathetical approaches of the potassium salts with MI(2) allow the synthesis of [(thf)(4)Ca(OPPh(2))(2)] (1), [(dmso)(2)Ca(O(2)PPh(2))(2)] (2), [(thf)(3)Ca(O(2)PPh(2))I](2) (3), [(thf)(3)Ca(S(2)PPh(2))(2)] (4), [(thf)(2)Ca(Se(2)PPh(2))(2)] (5), [(thf)(3)Sr(S(2)PPh(2))(2)] (6), [(thf)(3)Sr(Se(2)PPh(2))(2)] (7), and [(thf)(2)Ca(O(2)PPh(2))(S(2)PPh(2))](2) (8), respectively. The diphenylphosphinite anion in 1 contains a phosphorus atom in a trigonal pyramidal environment and binds terminally via the oxygen atom to calcium. The diphenylphosphinate anions act as bridging ligands leading to polymeric structures of calcium bis(diphenylphosphinates). Therefore strong Lewis bases such as dimethylsulfoxide (dmso) are required to recrystallize this complex yielding chain-like 2. The chain structure can also be cut into smaller units by ligands which avoid bridging positions such as iodide and diphenyldithiophosphinate (3 and 8, respectively). In general, diphenyldithio- and -diselenophosphinate anions act as terminal ligands and allow the isolation of mononuclear complexes 4 to 7. In these molecules the alkaline earth metals show coordination numbers of six (5) and seven (4, 6, and 7).  相似文献   

12.
Platinum bisphosphine complexes bearing dichalcogen-derivatised naphthalene, acenaphthene or phenanthrene ligands have been prepared by either oxidative addition to zero-valent platinum species or from [PtCl(2)(PPhR(2))] (R=Ph or Me) and the disodium or dilithium salts of the parent disulfur, diselenide or mixed S/Se species. The parent naphthalene, acenaphthene and phenanthrene chalcogen compounds were treated with either [Pt(PPh(3))(4)] or [Pt(C(2)H(4))(PMe(3))(2)] (prepared in situ from [PtCl(2)(PMe(3))(2)], ethene and sodium naphthalide or super hydride [LiBEt(3)H]) to give the appropriate platinum(II) species. The dilithium salts of 1,8-E(2)-naphthalene (E=S or Se) prepared in situ by reduction of the E-E bond with [LiBEt(3)H] were treated with [PtCl(2)(PPh(3))(2)] to give [Pt(1,8-E(2)-nap)(PPh(3))(2)]. The tetraoxides [Pt(1,8-(S(O)(2))(2)-nap)(PR(3))(2)] (PR(3)=PPh(3) or PMe(2)Ph) were prepared in a similar metathetical manner from the appropriate [PtCl(2)(PR(3))] complexes and the disodium salt of naphthalene 1,8-disulfinic acid (1,8-(S(O)ONa)(2)-nap). The X-ray structures of selected examples reveal bidentate coordination with the naphthalene-E(2) unit hinged (111-137 degrees) with respect to the coordination plane. The naphthalene ring suffers significant distortion from planarity.  相似文献   

13.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

14.
The reaction of [(3,5-Me(2)-C(5)H(3)N)(2)Zn(ESiMe(3))(2)] (E = Se, Te) with cadmium(II) acetate in the presence of PhESiMe(3) and P(n)Pr(3) at low temperature leads to the formation of single crystals of the ternary nanoclusters [Zn(x)()Cd(10)(-)(x)()E(4)-(EPh)(12)(P(n)()Pr(3))(4)] [E = Se, x = 1.8 (2a), 2.6 (2b); Te, x = 1.8 (3a), 2.6 (3b)] in good yield. The clusters [Zn(3)Hg(7)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (4) and [Cd(3.7)Hg(6.3)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (5) can be accessed by similar reactions involving [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SeSiMe(3))(2)] or [(N,N'-tmeda)Cd(SeSiMe(3))(2)] (1) and mercury(II) chloride. The metal silylchalcogenolate reagents are efficient delivery sources of {ME(2)} in cluster synthesis, and thus, the metal ion content of these clusters can be readily moderated by controlling the reaction stoichiometry. The reaction of cadmium acetate with [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SSiMe(3))(2)], PhSSiMe(3), and P(n)()Pr(3) affords the larger nanocluster [Zn(2.3)Cd(14.7)S(4)(SPh)(26)(P(n)()Pr(3))(2)] (6). The incorporation of Zn(II) into {Cd(10)E} (E = Se, Te) and Zn(II) or Cd(II) into {Hg(10)Se} nanoclusters results in a significant blue shift in the energy of the first "excitonic" transition. Solid-state thermolysis of complexes 2 and 3 reveals that these clusters can be used as single-source precursors to bulk ternary Zn(x)Cd(1)(-)(x)E materials as well as larger intermediate clusters and that the metal ion ratio is retained during these reactions.  相似文献   

15.
The reactions of Na[C(5)(CN)(5)] (Na[1]) with group 11 phosphine complexes [(P)(n)MCl] (M = Cu, Ag, Au, P = Ph(3)P; M = Cu, P = dppe (Ph(2)PCH(2)CH(2)PPh(2))] give a range of compounds containing the pentacyanocyclopentadienide ligand, [C(5)(CN)(5)](-) (1). The new complexes [(Ph(3)P)(2)M{1}](2) [M = Cu (3); M = Ag (5)], [(Ph(3)P)(3)Ag{1}] (4), [(dppe)(3)Cu(2){1}(2)] (6) and [Au(PPh(3))(2)][1] (7) include the first complete series of group 11 complexes of any cyclopentadienide ligand to be structurally characterised.  相似文献   

16.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction.  相似文献   

17.
The reaction of the neutral binuclear complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(phen)] (phen = 1,10-phenanthroline, R(F) = C(6)F(5); M = Pt, 1; M = Pd, 2) with AgClO(4) or [Ag(OClO(3))(PPh(3))] affords the trinuclear complexes [AgPt(2)(μ-PPh(2))(2)(R(F))(2)(phen)(OClO(3))] (7a) or [AgPtM(μ-PPh(2))(2)(R(F))(2)(phen)(PPh(3))][ClO(4)] (M = Pt, 8; M = Pd, 9), which display an "open-book" type structure and two (7a) or one (8, 9) Pt-Ag bonds. The neutral diphosphine complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(P-P)] (P-P = 1,2-bis(diphenylphosphino)methane, dppm, M = Pt, 3; M = Pd, 4; P-P = 1,2-bis(diphenylphosphino)ethane, dppe, M = Pt, 5; M = Pd, 6) react with AgClO(4) or [Ag(OClO(3))(PPh(3))], and the nature of the resulting complexes is dependent on both M and the diphosphine. The dppm Pt-Pt complex 3 reacts with [Ag(OClO(3))(PPh(3))], affording a silver adduct 10 in which the Ag atom interacts with the Pt atoms, while the dppm Pt-Pd complex 4 reacts with [Ag(OClO(3))(PPh(3))], forming a 1:1 mixture of [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(dppm)] (11), in which the silver atom is connected to the Pt-Pd moiety through Pd-(μ-PPh(2))-Ag and Ag-P(k(1)-dppm) interactions, and [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(PPh(3))(2)][ClO(4)] (12). The reaction of complex 4 with AgClO(4) gives the trinuclear derivative 11 as the only product. Complex 11 shows a dynamic process in solution in which the silver atom interacts alternatively with both Pd-μPPh(2) bonds. When P-P is dppe, both complexes 5 and 6 react with AgClO(4) or [Ag(OClO(3))(PPh(3))], forming the saturated complexes [(PPh(2)C(6)F(5))(R(F))Pt(μ-PPh(2))(μ-OH)M(dppe)][ClO(4)] (M = Pt, 13; Pd, 14), which are the result of an oxidation followed by a PPh(2)/C(6)F(5) reductive coupling. Finally, the oxidation of trinuclear derivatives [(R(F))(2)Pt(II)(μ-PPh(2))(2)Pt(II)(μ-PPh(2))(2)Pt(II)L(2)] (L(2) = phen, 15; L = PPh(3), 16) by AgClO(4) results in the formation of the unsaturated 46 VEC complexes [(R(F))(2)Pt(III)(μ-PPh(2))(2)Pt(III)(μ-PPh(2))(2)Pt(II)L(2)][ClO(4)](2) (17 and 18, respectively) which display Pt(III)-Pt(III) bonds.  相似文献   

18.
Homoleptic copper(I) and silver(I) complexes [M(n)(L-L)(2)(n)()](BF(4))(n)() (M = Cu or Ag; L-L = MeECH(2)EMe; E = S, Se or Te) have been prepared and characterized by analysis, FAB mass spectrometry, and IR and multinuclear NMR spectroscopy ((1)H, (77)Se, (125)Te, (63)Cu and (109)Ag). The single-crystal X-ray structures of [Cu(n)()(MeSeCH(2)SeMe)(2)(n)()](PF(6))(n)() (orthorhombic, P2(1)2(1)2(1), a = 10.879(7) ?, b = 16.073(7) ?, c = 9.19(1) ?, Z = 4) and [Ag(n)()(MeSeCH(2)SeMe)(2)(n)()](BF(4))(n)() (monoclinic, P2(1)/c, a = 14.546(9) ?, b = 14.65(1) ?, c = 30.203(9) ?, Z = 4) reveal extended three-dimensional cationic frameworks in the solid state which contain large cylindrical or rectangular channels accommodating the PF(6)(-) or BF(4)(-) counterions. In contrast, a single-crystal X-ray structure of [Cu(n)()(MeSCH(2)SMe)(2)(n)()](PF(6))(n)().nMeNO(2) (orthorhombic, Pbcn, a = 15.506(3) ?, b = 8.934(2) ?, c = 25.859(3) ?, Z = 8) shows tetrahedral Cu(I) ions coordinated to bridging dithioethers forming an cationic ribbon-like arrangement of 8-membered rings. Adjacent rings are linked by the Cu atoms. Variable temperature NMR studies have been used to probe various exchange processes occurring in solution in these systems.  相似文献   

19.
Rhodium and iridium complexes bearing a tridentate [PEP] type ligand ([PEP] = {o-(Ph(2)P)C(6)H(4)}(2)E(Me); E = Ge or Sn) were synthesized through the phosphine exchange reaction accompanied by selective E-C bond cleavage. The ligand precursors {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) (E = Ge or Sn) were readily obtained in excellent yields by treating {o-(Ph(2)P)C(6)H(4)}(2)Li with 0.5 equivalents of Me(2)ECl(2). Tris(triphenylphosphine)rhodium(i) carbonyl hydride M(H)(CO)(PPh(3))(3) (M = Rh, Ir) cleaved one of the E-Me bonds of {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) exclusively to afford the trigonal bipyramidal (TBP) complexes, [PEP]M(CO)(PPh(3)). Square-planar rhodium complexes [PEP]Rh(PPh(3)) were also prepared from the reactions of tetrakis(triphenylphosphine)rhodium(i) hydride Rh(H)(PPh(3))(4) with {o-(Ph(2)P)C(6)H(4)}(2)EMe(2). Further, the trans influence of group 14 elements E (E = Si, Ge, Sn) in [PEP]Rh(PPh(3)) is discussed in terms of the (1)J(Rh-P) coupling constants, indicating that E exhibited a stronger trans labilizing effect in the order Sn < Ge < Si.  相似文献   

20.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号