首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The gauge covariance of the wave function phase factor in noncommutative quantum mechanics (NCQM) is discussed. We show that the naive path integral formulation and an approach where one shifts the coordinates of NCQM in the presence of a background vector potential leads to the gauge non-covariance of the phase factor. Due to this fact, the Aharonov–Bohm phase in NCQM which is evaluated through the path-integral or by shifting the coordinates is neither gauge invariant nor gauge covariant. We show that the gauge covariant Aharonov–Bohm effect should be described by using the noncommutative Wilson lines, what is consistent with the noncommutative Schrödinger equation. This approach can ultimately be used for deriving an analogue of the Dirac quantization condition for the magnetic monopole.  相似文献   

2.

The Seiberg-Witten formalism has been realized as an electrodynamics in phase space (associated to the Dirac equation written in phase space) and this fact is explored here with non-abelian gauge group. First, a physically heuristic presentation of the Seiberg-Witten approach is carried out for non-abelian gauge in order to guide the calculation procedures. These results are realized by starting with the Lagrangian density for the free Dirac field in phase space. Then a field strength is derived, where the non-abelian gauge group is the SU(2), corresponding to an isospin (non-abelian) field theory in phase space. An application to nucleon is then discussed.

  相似文献   

3.
Conclusion The principal difficulty that has obstructed the formulation of gauge gravitation for more than twenty years now is the fact that an Einstein gravitational field represents a metric or a tetradic field, while gauge fields are connections on fiber bundles.The popular approach to the resolution of this problem lies in attempts to represent tetrad fields as gauge fields of the translation subgroup within the framework of the gauge theory of the Poincaré group, but the existing set of variants of the latter theory indicate that it is a long way from completion.Our approach [2, 3] insists that in a gauge theory, apart from gauge fields, the situation of spontaneous breaking of symmetry can also admit Goldstone and Higgs fields, under which is subsumed the metric (tetrad) gravitational field by virtue of the fact that, as we have shown above, the equivalence principle is included in the gauge theory of gravitation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 79–82, June, 1981.  相似文献   

4.
The action principle is used to derive, by an entirely algebraic approach, gauge transformations of the full vacuum-to-vacuum transition amplitude (generating functional) from the Coulomb gauge to arbitrary covariant gauges and in turn to the celebrated Fock–Schwinger (FS) gauge for the Abelian (QED) gauge theory without recourse to path integrals or to commutation rules and without making use of delta functionals. The interest in the FS gauge, in particular, is that it leads to Faddeev–Popov ghosts-free non-Abelian gauge theories. This method is expected to be applicable to non-Abelian gauge theories including supersymmetric ones.  相似文献   

5.
We provide an alternative to the gauge covariant horizontality condition, which is responsible for the derivation of the nilpotent (anti-) BRST symmetry transformations for the gauge and (anti-) ghost fields of a (3+1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4,2)-dimensional supermanifold, parameterised by a set of four spacetime coordinates, xμ(μ=0,1,2,3), and a pair of Grassmannian variables, θ and θ̄. The latter condition enables us to derive the nilpotent (anti-) BRST symmetry transformations for all the fields of an interacting 1-form 4D non-Abelian gauge theory in which there is an explicit coupling between the gauge field and the Dirac fields. The key differences and the striking similarities between the above two conditions are pointed out clearly. PACS 11.15.-q; 12.20.-m; 03.70.+k  相似文献   

6.
In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.  相似文献   

7.
A classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of composite particles is proposed and the quantum formalism is constructed. This gauge model containing a Chern–Simons U(1) field and the electromagnetic U(1) field can be coupled to both a bosonic or a fermionic matter field. We explicitly consider the second case, a composite fermion system in the presence of an electromagnetic field, and we carry out the canonical quantization by the Dirac method. The path integral approach is developed and the Feynman rules are established. A simplified model is considered. As an alternative path integral method, the BRST formalism for this gauge model is also treated.  相似文献   

8.
Based upon a fundamental principle, the generalized gauge principle, we construct a general model with GL×G'R×Z2 gauge symmetry, where Z2 = π4(GL) is the fourth homotopy group of the gauge group GL, by means of the non-commutative differential geometry and reformulating the standard model with the Higgs field being a gauge field on the fourth homotopy group of their gauge groups. We show that in this approach not only the Higgs field is automatically introduced on an equal footing with ordinary Yang-Mills gauge potentials and there are no extra constraints among the parameters at the tree level but also most importantly the models survive quantum corrections.  相似文献   

9.
《Nuclear Physics B》1998,512(3):601-615
The integrability and the algebraic Bethe ansatz approach for the one-dimensional (1D) Hubbard model with chemical potential are studied in the framework of the quantum inverse scattering method. We also investigate the hidden local gauge invariance for the model. It is found that the R-matrix only permits Abelian U(1) ⋇s U(1) gauge transformations, and it is shown that the energy spectrum is gauge invariant whereas the eigenvectors and the Bethe ansatz equations are explicitly gauge dependent.  相似文献   

10.
Einstein's principle of general relativity is a dynamical-group approach in that all dynamics is implied by the invariance and no force is introduced (as an external, symmetry-breaking factor). In this spirit we take a Poincaré-invariant free wave equation and, deforming the Poincaré group to the de Sitter group, obtain interaction. This illustrates our algebraic approach to gauge invariance, whereby the (generalized) Maxwell tensor of the Yang-Mills field appears as structure constants of the homogeneous algebra obtained as a deformation of an inhomogeneous one, with interaction appearing via the same tensor, which plays a role corresponding to the curvature tensor in Einstein's general relativity.  相似文献   

11.
The question of a modification of the running gauge coupling of (non-)Abelian gauge theories by an incorporation of the quantum gravity contribution has recently attracted considerable interest. In this Letter we perform an involved diagrammatical calculation in the full Einstein–Yang–Mills system both in cut-off and dimensional regularization at one-loop order. It is found that all gravitational quadratic divergencies cancel in cut-off regularization and are trivially absent in dimensional regularization so that there is no alteration to asymptotic freedom at high energies. This settles the previously open question of a potential regularization scheme dependence of the one-loop β function traditionally computed in the background field approach. Furthermore we show that the remaining logarithmic divergencies give rise to an extended effective Einstein–Yang–Mills Lagrangian with a counterterm of dimension six.  相似文献   

12.
Within the field strength approach to Yang-Mills theories the fermionic sectors of gauge theories are bosonized for the SU(2) and SU(3) gauge group. The emerging effective meson theories are studied in the tree approximation. In this approximation the original minimal gauge coupling of the quarks to gluons is rendered into an effective local four-fermion interaction with non-trivial Lorentz and gauge structure. The Schwinger-Dyson equation is solved in the strong coupling limit and the quark condensates and constituent masses are evaluated.  相似文献   

13.
Unparticles charged under a gauge group can contribute to the running of the gauge coupling. We show that a scalar unparticle of scaling dimension d contributes to the β function a term that is (2-d) times that from a scalar particle in the same representation. This result has important implications for asymptotic freedom. An unparticle with d>2, in contrast to its matter counterpart, can speed up the approach to asymptotic freedom for a non-Abelian gauge theory and has the tendency to make an Abelian theory also asymptotically free. For not spoiling the excellent agreement of the standard model (SM) with precision tests, the infrared cut-off, m, of such an unparticle would be high but might still be reachable at colliders such as LHC and ILC. Furthermore, if the unparticle scale ΛU is high enough, unparticles could significantly modify the unification pattern of the SM gauge couplings. For instance, with three scalar unparticles of d∼2.5 in the adjoint representation of the strong gauge group but neutral under the electroweak one, the three gauge couplings would unify at a scale of ∼ 8×1012 GeV, which is several orders of magnitude below the supersymmetric unification scale. PACS  12.90.+b; 14.80.-j; 11.10.Hi; 12.10.Dm  相似文献   

14.
The Galilean invariance of the Navier–Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi–Rouet–Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier–Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.  相似文献   

15.
In this article, we postulate SO(3, 1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO(3, 1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL(4) (the local symmetry determined by the parallel transport). Thus if we assume both L(4) and SO(3, 1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO(3, 1) Weyl-Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein-Weyl-Yang system we study whether the SO(3, 1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl-Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model.  相似文献   

16.
R. P. Malik  B. P. Mandal 《Pramana》2009,72(3):505-515
We demonstrate that the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian density of a four (3 + 1)-dimensional (4D) non-Abelian 1-form gauge theory with Dirac fields can be captured within the framework of the superfield approach to BRST formalism. The above 4D theory, where there is an explicit coupling between the non-Abelian 1-form gauge field and the Dirac fields, is considered on a (4,2)-dimensional supermanifold, parametrized by the bosonic 4D spacetime variables and a pair of Grassmannian variables. We show that the Grassmannian independence of the super-Lagrangian density, expressed in terms of the (4,2)-dimensional superfields, is a clear signature of the presence of the (anti-)BRST invariance in the original 4D theory.   相似文献   

17.
The internal gauge space of electrodynamics considered as a U(1) gauge field theory is a scalar. This leads to the result that in free space, and for plane waves, the Poynting vector and energy vanish. This result is consistent with the fact that U(1) gauge field theory results in a null third Stokes parameter, meaning again that the field energy vanishes in free space. A self consistent definition of the stress energy momentum tensor is obtained with a Yang Mills theory applied with an O(3) symmetry internal gauge space. This theory produces the third Stokes parameter self consistently in terms of the self-dual Evans-Vigier fields B(3).  相似文献   

18.
The propagation of perturbations on a spatially flat Robertson-Walker background is studied within linear perturbation theory in deDonder gauge and for comparison in synchronous gauge. The metric perturbations should be determined uniquely by the density/pressure perturbations, therefore only two initial conditions, namely for the density contrast and its time derivative, should be needed. Since the number of fundamental solutions for the density perturbations is higher than 2 in both gauges (6 resp. 3) an additional reduction of possible initial conditions, resp. a physically motivated exclusion of solutions, is needed. It is shown that the common treatment of excluding the so-called gauge solutions (solutions which can be gauged to zero in an already chosen gauge) leads to unphysical results. If gauge solutions are excluded the density perturbation solutions are the same in both gauges. But the correct Newtonian limit — which is present in deDonder gauge but not in synchronous gauge — is bound to the differences in the two gauges for large spatial scales of perturbations. Furthermore, compressional wave solutions should vanish for infinite spatial scales of perturbations (isotropy), but this is guaranteed in deDonder gauge by gauge solutions again. Gauge solutions should therefore not be taken as unphysical.  相似文献   

19.
20.
A dynamical non-Abelian 2-form gauge theory (with BF term) is endowed with the “scalar” and “vector” gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi–Rouet–Stora–Tyutin (BRST) analysis of the four (3+1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the “scalar” and “vector” gauge symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号