首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Solid-state technology and pulse electroplating were used to fabricate a glucose biosensor based on hydrogen peroxide detection. This glucose biosensor was composed of thin-film electrodes, and enzyme-immobilized and deactivated enzyme-immobilized membranes. The electrodes were fabricated by metallic film deposition. Cr and Ni adhesive layers were applied successively by vapour deposition on the thermally oxidized SiO2 isolating layer on a silicon substrate, and then the two metallic layers were patterned by the photolithographic method. Subsequently, a 1 μm thick Au layer was applied by means of pulse electroplating, forming two anodes and one common cathode in each sensor chip. On one anode, glucose oxidase (GOD) was immobilized by cross-linking with bovin serum albumin and glutaraldehyde. A deactivated GOD-immobilized membrane was formed on the other anode, which worked as a reference working electrode. A novel differential measurement system was used to treat the output signals of the two anodes by adjusting the initial position of the response curves, compensating amplifications of the individual IV converters and treating the output signals with a subtraction circuit in order to decrease measurement error. The test results showed that the signal of ascorbic acid up to 4.5 mmol 1−1 or uric acid up to 1.2 mmol 1−1 was successfully cancelled. Glucose concentrations in the range 0.02–4.0 mmol/1 could be detected and an excellent linear response was obtained in the low concentration range. The correlation coefficient between the result of the enzyme electrode and the clinically enzymatic method for glucose measurement in human serum was 0.9912. Correlated results between the biosensor method and the routine clinical method for the measurement of glucose concentration in urine were obtained. The lifetime of the enzyme electrode was over 2 months.  相似文献   

2.
A novel electrochemical immunosensor based on double signal amplification of enzyme-encapsulated liposomes and biocatalytic metal deposition was developed for the detection of human prostate specific antigen (PSA). Alkaline phosphatase (ALP)-encapsulated and detection antibody-functionalized liposomes were first prepared and used as the detection reagent. In the sandwich immunoassay, the model analyte PSA was first captured by anti-PSA capture antibody immobilized on the electrode and then sandwiched with the functionalized liposomes. The bound liposomes were then lysed with surfactant to release the encapsulated ALP, which served as secondary signal amplification means. ALP on the electrode surface initiated the hydrolysis of ascorbic acid 2-phosphate (AA-p) to produce ascorbic acid. The latter, in turn, reduced silver ions on the electrode surface, leading to deposition of the metal silver on the electrode surface. Linear sweep voltammetry (LSV) was chosen to detect the amount of the deposited silver. The results showed that the anodic stripping peak current was linearly dependent on the PSA concentration in the range of 0.01-100 ng mL−1, and a detection limit as low as 0.007 ng mL−1 can be obtained. Since the cut-off value of human PSA is 4 ng mL−1, the proposed electrochemical immunosensor would be expected to gain widespread applications for the detection of PSA in clinical diagnosis.  相似文献   

3.
《Electroanalysis》2005,17(2):113-119
An enzyme electrode based on the coimmobilization of an osmium redox polymer and laccase on glassy carbon electrodes has been applied to ultra sensitive amperometric detection of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine, resulting in nanomolar detection limits, as low as 4 nM for dopamine. The sensitivity of the electrode is due to signal amplification via oxidation of the catecholamine by the immobilized laccase, which is regenerated by concomitant reduction of oxygen to water, coupled to the electrocatalytic re‐reduction of the oxidized catecholamine by the osmium redox complex: electrocatalytic substrate recycling. In addition because the sensor can be operated in reductive mode at ?0.2 V (vs. Ag/AgCl), noise and interferences are diminished. Combined with its high sensitivity this enzyme electrode also exhibited excellent selectivity allowing the detection of catecholamines in the presence of ascorbic acid. However, differentiation between the current responses achieved for the three catecholamines is not possible. The effective mode of constant recycling, resulting in amplification of the current response, of the laccase enzyme electrode sensor combined with the inherent advantages of using electrochemical techniques holds great promise for the future of catecholamine detection and monitoring.  相似文献   

4.
A highly selective dopamine quantification at a new polymer-modified electrode in the presence of large excess of ascorbic acid and 3,4-dihydroxyphenyl acetic acid (dopac) is described. The electrochemical detection was performed at a glassy carbon electrode modified with a melanin-type polymer obtained by polymerization of 3.0×10−3 M -dopa in 0.050 M phosphate buffer solution pH 7.40 by applying 1.00 V for 60 min. The polymeric film exhibits attractive permselectivity excluding anionic species such as potassium ferricyanide, ascorbic acid, dopac and uric acid. Cationic species such as epinephrine, norepinephrine and dopamine and neutral ones such as catechol and hydrogen peroxide can be oxidized at the polymer-modified electrode. The use of ascorbic acid in the measurement solution allows the amplification of dopamine oxidation signal due to the reduction of the electrochemically generated dopaminequinone. By using 1.0×10−3 M ascorbic acid, the detection limit for dopamine is 5.0 nM. The interference for the maximum physiological concentrations of ascorbic acid and dopac in nervous centers, i.e. 500 μM ascorbic acid and 50 μM dopac is 8.1 and 1.4%, respectively.  相似文献   

5.
Heated electrodes were applied for the non-isothermal operation of amperometric glucose biosensors based on glucose oxidase immobilised on the electrode surface by entrapment within a polymer layer. The localised deposition of the polymer film under simultaneous entrapment of the enzyme was achieved by an electrochemically induced pH-modulation in the diffusion zone in front of the electrode, thus altering the solubility of the polymer chains. This non-manual sensor preparation protocol could be successfully used for the modification of a novel indirectly heated electrode. The non-isothermal operating mode allows working at the optimum temperature of the enzyme sensors without any thermal distortion of the bulk solution. Increased surface temperature of the sensor thus accelerates transport as well as kinetic processes, resulting in an enhanced amperometric signal.In the presence of interfering compounds such as ascorbic acid, the proposed technique allows use of the diverging thermal impact on the sensing process, for different electrochemically active compounds, for a deconvolution of the amperometric signal at different electrode temperatures. A calculation method for determination of glucose in the presence of one interfering compound is presented as a basis for a calculative interference elimination.  相似文献   

6.
Electrochemical methods are well suited for chemical detection in hand-held devices because they are simple, fast, and sensitive. However, electrochemical detection methods generally suffer from limitations in selectivity. We report a novel approach that enables electrochemically initiated reactions to generate optical signals that can be used to enhance the discriminating power for the electrochemical analysis of antioxidant food phenols. This spectroelectrochemical approach employs transparent electrodes coated with a film of the aminopolysaccharide chitosan. The phenolic analytes diffuse through the chitosan film to the electrode where they are anodically oxidized into electrophilic intermediates that undergo postelectrode reactions with the chitosan film. The postelectrode reaction was analyzed by FTIR and XPS, and this reaction was observed to impart optical properties (color and UV-visible absorbance) to the otherwise colorless and transparent chitosan film. We demonstrate that the optical signal generated from the postelectrode film reaction is selective for oxidized phenols, compared to that for unoxidized phenols or the nonphenolic antioxidant ascorbic acid. Furthermore, we demonstrate that the optical signal (film absorbance) can be correlated to the electrical signal (charge transferred). Finally, we use simple mixtures to demonstrate that the coupling of information from independent optical and electrical measurement modes can assist in the qualitative analysis of antioxidant phenols. Potentially, the postelectrode film reaction may provide a selective and reagentless alternative to conventional colorimetric methods for detecting antioxidant phenols. In a broader perspective, this work suggests the potential for coupling independent detection modes (optical and electrical) to enhance the information content of sensor measurements.  相似文献   

7.
Si P  Chen H  Kannan P  Kim DH 《The Analyst》2011,136(24):5134-5138
A novel method is developed to fabricate the polypyrrole (PPy) and graphene thin films on electrodes by electrochemical polymerization of pyrrole with graphene oxide (GO) as a dopant, followed by electrochemical reduction of GO in the composite film. The composite of PPy and electrochemically reduced graphene oxide (eRGO)-modified electrode is highly sensitive and selective toward the detection of dopamine (DA) in the presence of high concentrations of ascorbic acid (AA) and uric acid (UA). The sensing performance of the PPy/eRGO-modified electrode is investigated by differential pulse voltammetry (DPV), revealing a linear range of 0.1-150 μM with a detection limit of 23 nM (S/N = 3). The practical application of the PPy/eRGO-modified electrode is successfully demonstrated for DA determination in human blood serum.  相似文献   

8.
The two articles in this series are dedicated to bioaffinity electrodes with in situ detection of the product of the enzyme label after recognition by its conjugate immobilized on the electrode. Part 1 was devoted to direct electrochemical detection, whereas the present contribution deals with homogeneous chemical and enzymatic amplification of the primary electrochemical signal. The theoretical relationships that are established for these modes of amplification are applied to the avidin-biotin recognition in a system that involves alkaline phosphatase as enzyme label and 4-amino-2,6-dichloro-phenyl phosphate as substrate, generating 2,6-dichloro-4-aminophenol as electrochemically active product. Chemical amplification then results from the addition of NADH, which reduces the 2,6-dichloro-quinonimine resulting from the electrochemical oxidation of 2,6-dichloro-4-aminophenol. An increased amplification is obtained when the reduction of 2,6-dichloro-quinonimine involves diaphorase in solution with NADH as substrate. The excellent agreement between theoretical predictions and experimental data required a detailed theoretical analysis and the independent determination of the key kinetic parameters of the system. The theoretical analysis was extended to monolayer and multilayered films of auxiliary enzyme as well as to electrochemical amplification by means of closely spaced dual electrodes so as to offer a rational comparative panorama of the amplification capabilities of the various possible strategies. Confinement of the profile of the product, and/or its oxidized form, in the vicinity the electrode surface appears as a key parameter of amplification.  相似文献   

9.
Kwon SJ  Yang H  Jo K  Kwak J 《The Analyst》2008,133(11):1599-1604
Redox cycling of enzymatically amplified electroactive species has been widely employed for high signal amplification in electrochemical biosensors. However, gold (Au) electrodes are not generally suitable for redox cycling using a reducing (or oxidizing) agent because of the high background current caused by the redox reaction of the agent at highly electrocatalytic Au electrodes. Here we report a new redox cycling scheme, using nicotinamide adenine dinucleotide (NADH), which can be applied to Au electrodes. Importantly, p-aminophenol (AP) redox cycling by NADH is achieved in the absence of diaphorase enzyme. The Au electrodes are modified with a mixed self-assembled monolayer of mercaptododecanoic acid and mercaptoundecanol, and a partially ferrocenyl-tethered dendrimer layer. The self-assembled monolayer of long thiol molecules significantly decreases the background current of the modified Au electrodes, and the ferrocene modification facilitates easy oxidation of AP. The low amount of ferrocene on the Au electrodes minimizes ferrocene-mediated oxidation of NADH. In sandwich-type electrochemical immunosensors for mouse immunoglobulin G (IgG), an alkaline phosphatase label converts p-aminophenylphosphate (APP) into electroactive AP. The amplified AP is oxidized to p-quinoneimine (QI) by electrochemically generated ferrocenium ion. NADH reduces QI back to AP, which can be re-oxidized. This redox cycling enables a low detection limit for mouse IgG (1 pg mL(-1)) to be obtained.  相似文献   

10.
The electrochemical behavior of formaldehyde (CH2O) at solid electrodes made of platinum, gold, silver, cobalt, nickel, copper, and graphite was studied. The working surface of the electrodes was renewed by cutting a thin layer (0.5 m) immediately in the test solution. It was found that, in alkaline solutions, CH2O was oxidized at all electrodes other than cobalt and graphite ones while scanning the potential to the anode and cathode regions. The peaks of CH2O oxidation at platinum and gold electrodes using potential scanning in the anode and cathode directions, as well as at nickel, copper, and silver electrodes using potential scanning in the anodic direction, are suitable for analytical purposes.  相似文献   

11.
A simple and eco-friendly electrochemical route was developed by using silver as the cathode, magnesium as the anode and ionic liquid BMIMBF4 as solvent for the electrochemical dimerisation of aromatic bromides. The electrochemical behaviour was studied at different electrodes (Ag, Cu, Ni and Ti) by cyclic voltammetry, which shows significant electrocatalytic effect of the silver electrode towards the reductive dimerisation of aromatic bromides. Biaryls were obtained in moderate to good yield (12–68%). A recycling study confirmed that the solvent can be reused multiple times without activity loss.  相似文献   

12.
Recessed generator–collector assemblies consisting of an array of recessed disks (generator electrodes) with a gold layer (collector electrode) deposited over the top‐plane insulator reportedly allow increased selectivity and sensitivity during electrochemical detection of dopamine (DA) in the presence of ascorbic acid (AA), a situation which is frequently encountered. In sensor design, the potential of the disk electrodes is set to the wave plateau of DA, whereas the plane electrode is biased at the irreversible wave plateau of AA before the onset of the DA oxidation wave. Thus, AA is scavenged but DA is allowed to enter the nanocavities to be oxidized at the disk electrodes, and its signal is further amplified by redox cycling between disk and plane electrodes. Several different theoretical approaches are elaborated herein to analyze the behavior of the system, and their conclusions are successfully tested by experiments. This reveals the crucial role of the plane‐electrode area which screens access to the recessed disks (i.e. acts as a diffusional Faraday cage) and simultaneously contributes to amplification of the analyte signal through positive feedback, as occurs in interdigitated arrays and scanning electrochemical microscopy. Simulations also allow for the evaluation of the benefits of different geometries inspired by the above design and different operating modes for increasing the sensor performance.  相似文献   

13.
Abstract

The dual electrochemical detectors for ordinary and micro high-performance liquid chromatography were briefly reviewed.

The electrochemical behaviors of biogenic amine metabolites were studied by cyclic semi-differential and semi-integral voltammetry with a glassy carbon working electrode. It was found that the electrochemical reactions of many biogenic amine metabolites are quasi-reversible. The dual electrochemical detector based on thin-layer electrolytic cell with two working electrodes (anode and cathode) in series configuration was tested for selective detection of biogenic amine metabolites on their electrochemical quasi-reversibility. The detector was successfully utilized for the simultaneous determination of 3, 4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in human urine directly injected by micro high-performance liquid chromatography.  相似文献   

14.
Roughened silver electrodes for use in metal-enhanced fluorescence   总被引:3,自引:0,他引:3  
Roughened silver electrodes are widely used for surface-enhanced Raman scattering (SERS). We tested roughened silver electrodes for metal-enhanced fluorescence. Constant current between two silver electrodes in pure water resulted in the growth of fractal-like structures on the cathode. This electrode was coated with a monolayer of human serum albumin (HSA) protein that had been labeled with a fluorescent dye, indocyanine green (ICG). The fluorescence intensity of ICG-HSA on the roughened electrode increased by approximately 50-fold relative to the unroughened electrode, which was essentially non-fluorescent and increased typically two-fold as compared to the silver anode. No fractal-like structures were observed on the anode. Lifetime measurements showed that at least part of the increased intensity was due to an increased radiative decay rate of ICG. In our opinion, the use of in situ generated roughened silver electrodes will find multifarious applications in analytical chemistry, such as in fluorescence based assays, in an analogous manner to the now widespread use of SERS. To the best of our knowledge this is the first report of roughened silver electrodes for metal-enhanced fluorescence.  相似文献   

15.
The antioxidant ‘reduced glutathione’ tripeptide is conventionally called glutathione (GSH). The oxidized form is a sulfur‐sulfur linked compound, known as glutathione disulfide (GSSG). Glutathione is an essential cofactor for antioxidant enzymes; it provides protection also for the mitochondria against endogenous oxygen radicals. The ratio of these two forms can act as a marker for oxidative stress. The majority of the methods available for estimation of both the forms of glutathione are based on colorimetric and electrochemical assays. In this study, electrochemical sensors were developed for the estimation of both GSH and GSSG. Two different types of transducers were used: i) screen‐printed three‐electrode disposable sensor (SPE) containing carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode; ii) three‐electrode disposable system (CDE) consisting of three copper electrodes. 5,5′‐dithiobis(2‐nitrobenzoic acid) (DTNB) was used as detector element for estimation of total reduced thiol content. The enzyme glutathione reductase along with a co‐enzyme reduced nicotinamide adenine dinucleotide phosphate was used to estimate GSSG. By combining the two methods GSH can also be estimated. The detector elements were immobilized on the working electrodes of the sensors by bulk polymerization of acrylamide. The responses were observed amperometrically. The detection limit for thiol (GSH) was less than 0.6 ppm when DTNB was used, whereas for GSSG it was less than 0.1 ppm.  相似文献   

16.
An apparatus is described for the automatic titration of acids by the constant current coulometric technique. The generator electrodes comprise a platinum cathode and a silver/silver bromide anode. The increase in pH resulting from the reduction of hydrogen ion at the cathode is indicated by a glass electrode, in conjunction with a Beckman Automatic Titrator which automatically monitors the titration and interrupts the generating current when the equivalence point pH is reached. Quantities of hydrochloric acid in the neighborhood of 0.12 millimole in 50 ml were titrated with a mean error of -0.07% and an average deviation from the mean of ±0.15%. The technique is applicable to any strong or weak acid, and to acid mixtures, provided that no substance is present which is either reducible at the platinum cathode or reactive in any way at the silver anode.  相似文献   

17.
《Electroanalysis》2004,16(19):1583-1591
Micro‐wire electrodes were made from gold and silver wires (diameter: 25 μm; length: 3–21 mm) and sealed in a polyethylene holder; micro‐disk electrodes were made from the same wires and polished. The gold electrodes were electrochemically coated with mercury before use; the silver wires were used without coating. Comparative measurements demonstrated that the micro‐wire electrodes had much higher sensitivity, and a much (10–100×) lower limit of detection, than micro‐disk electrodes, and the sensitivity increased linearly with the area and length of the electrodes. Using a gold micro‐wire electrode of 21 mm and a deposition time of 300 s the limit of detection was 0.07 nM Pb in seawater of natural pH, compared to a limit of detection of 10 nM Pb (more than 100×greater) using a gold micro‐disk electrode of the same diameter. Using the silver micro‐wire electrode the limit of detection of lead was improved by a factor of 10 to 0.2 nM in acidified seawater. It is expected that the improved sensitivity of micro‐wire electrodes will lead to successful in situ detection of metals in natural waters.  相似文献   

18.
Ruthenium oxide (RuO2) is commonly used in resistive pastes for screen printing. The electrochemical properties of a screen-printing planar RuO2 electrode have hardly been studied. In this communication, planar electrochemical sensors with a RuO2 working electrode, an Ag|AgCl reference electrode and a RuO2 counter electrode are fabricated by screen printing. The electro-oxidation of ascorbic acid, uric acid, and hydrogen peroxide on these RuO2 electrodes is investigated by means of cyclic voltammetry. Compared to uric acid and hydrogen peroxide, ascorbic acid can be easily oxidized at the low operating potential (<150 mV versus Ag|AgCl). The amperometric measurement of ascorbic acid at 100 mV on a RuO2 electrode shows fast response and good linearity in the 0–4 mM range. Meanwhile, the electrochemical interference from uric acid and hydrogen peroxide at this potential is very small.  相似文献   

19.
A highly sensitive electrochemical immunosensor for avian influenza A (H7N9) virus (H7N9 AIV) detection was proposed by using electrochemical magnetoimmunoassay coupled with biometallization and anodic stripping voltammetry. This strategy could accumulate the enzyme‐generated product on the surface of the magneto electrode by means of silver deposition, which amplified the detection signal about 80 times. The use of magnetic beads (MBs) and the magneto electrode could also amplify the detection signal. Furthermore, a bi‐electrode signal transduction system was introduced into this immunosensor, which is also beneficial to the immunoassay. A concentration as low as 0.011 ng mL?1 of H7N9 AIV could be detected in about 1.5 h with good specificity. This study not only provides a simple and sensitive approach for virus detection but also offers an effective signal enhancement strategy for the development of highly sensitive MB‐based electrochemical immunoassays.  相似文献   

20.
Ferrocene‐terminated self‐assembled monolayer (Fc‐SAM) on gold was used as an electron‐transfer mediator in the electrochemical assay of L ‐ascorbic acid 2‐phosphate (AAP). The assay is based on the enzymatic action of alkaline phosphatase (ALP), which triggers the release of vitamin C (L ‐ascorbic acid, AA) from AAP. The latter is easily oxidized on the Fc‐SAM under the diffusion limiting conditions that favors quantitative measurement of the AA concentration on a rotating disk electrode. We demonstrate the utility of the electrochemically active Fc‐SAM to probe the mechanism and to determine the kinetic parameters of an enzymatic reaction. The electrochemical technique was compared to a conventional spectrophotometric method of ALP activity detection using p‐nitrophenylphosphate (p‐NPP) as a substrate. We demonstrate that our new technique is also suitable for the analytical determination of ALP activity. The detection limits for both AAP and ALP were found to be 13 μM and 2 pM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号