首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

2.
Imide-siloxane block copolymer/silica hybrid membranes with covalent bonds were prepared via sol–gel reaction. The structural informations of these hybrid membranes were obtained by using Fourier transform-infrared spectrometry (FT-IR), 29Si nuclear magnetic resonance (29Si NMR), XPS and thermogravimetric analysis (TGA). The gas separation properties of the hybrid membranes were also investigated in terms of organosiloxane (PDMS) or silica content at various temperatures. In the hybrids, the addition of PDMS phase increased the permeabilities of gases such as He, CO2, O2, and N2, indicating that the gas transport occurred mainly through rubbery organic matrix. Meanwhile, the PDMS phase contributed the decreased gas selectivities to nitrogen but the reduction in selectivities was very small in comparison with other siloxane containing polymeric membranes. This might be due to the restriction of chain mobility by the existence of inorganic component such as silica network in the hybrids. Additionally, the increase of silica content in these hybrid membranes considerably retarded the falling-off of gas selectivity at elevated temperature. The increase of silica content in hybrid membranes resulted in well-formed silica networks and hence these inorganic components restricted the plasticization of organic matrix by the thermal segmental motion of organic components, leading to preventing the large decrease of the gas selectivity.  相似文献   

3.
Fourteen commercially available particle-packed columns and a monolithic column for hydrophilic interaction liquid chromatography (HILIC) were characterized in terms of the degree of hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the regio and configurational differences in hydrophilic substituents, the selectivity for molecular shapes, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature of the stationary phases using nucleoside derivatives, phenyl glucoside derivatives, xanthine derivatives, sodium p-toluenesulfonate, and trimethylphenylammonium chloride as a set of samples. Principal component analysis based on the data of retention factors could separate three clusters of the HILIC phases. The column efficiency and the peak asymmetry factors were also discussed. These data on the selectivity for partial structural differences were summarized as radar-shaped diagrams. This method of column characterization is helpful to classify HILIC stationary phases on the basis of their chromatographic properties, and to choose better columns for targets to be separated. Judging from the retention factor for uridine, these HILIC columns could be separated into two groups: strongly retentive and weakly retentive stationary phases. Among the strongly retentive stationary phases, zwitterionic and amide functionalities were found to be the most selective on the basis of partial structural differences. The hydroxyethyl-type stationary phase showed the highest retention factor, but with low separation efficiency. Weakly retentive stationary phases generally showed lower selectivity for partial structural differences.  相似文献   

4.
In this study, new monomers having siloxane groups were synthesized as an intermediate for preparation of siloxane modified polyimide polymers. Then with these monomers, the synthesis of uncrosslinked and crosslinked polyimide–siloxane hybrid polymer membranes were achieved. The purposes of the preparation of modified polyimides were to modify the thermal and chemical stability, and mechanical strength of polyimides, and to improve the gas separation properties of polymers. The new diamine monomer having siloxane groups was prepared from 3,5‐diaminobenzoic acid (3,5‐DABA) and 3‐aminopropyltrimethoxysilane (3‐APTMS) in N‐methyl‐2‐pyrollidone (NMP) at 180°C. The modified polyimide membranes having different amount of siloxane groups were synthesized from pyromellitic dianhydride (PMDA), 4,4‐oxydianiline (ODA), and 3,5‐diaminobenzamido‐N‐propyltrimethoxy silane (DABA/PTMS) in NMP using a two‐step thermal imidization process. The synthesis of modified polyimide membranes were characterized by Fourier transform infrared spectroscopy (FTIR). The thermal analysis of the polyimides were carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Water absorption and swelling experiments were also carried out for the investigation of structural properties of polymers. FTIR observations confirmed that the polyimide membranes with new diamine intermediate were successfully obtained. Thermal analysis showed that the uncrosslinked copolyimides exhibited two glass transition temperatures, indicating that they were separated microphases and it was found that all the modified copolyimides had showed higher glass transition temperature (Tg) than unmodified polyimides. The separation properties of the prepared polyimide membranes were also characterized by permeability for O2 and N2 gases and ideal selectivity values were calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This article presents a brief review concerning the production of conductive polymer blends and composites which combine conducting and insulating polymers. Different strategies for preparing these mixtures are examined, with emphasis on several properties of the final mixtures, such as: electronic conductivity, mechanical behaviour and thermal stability. The advantages of using blends in some technological applications instead of pure conducting polymers are discussed.  相似文献   

6.
7.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

8.
Silica hydride is a recent development in chromatographic support materials for HPLC where hydride groups replace 95% of the silanols on the surface. This conversion changes many of the fundamental properties of the material as well as the bonded stationary phases that are the result of further chemical modification of the hydride surface. The general approach for fabricating the silica hydride and subsequent bonded phases is reviewed. Properties of the silica hydride surface are compared to those of the standard material obtained in the preparation of most commercial HPLC stationary phases. Some unique chromatographic properties of hydride-based phases are described as well as some general application areas where these bonded materials may be used in preference to or have advantages not available from typical stationary phases.  相似文献   

9.
10.
高方园  焦丰龙  张养军  秦伟捷  钱小红 《色谱》2019,37(10):1071-1083
外泌体是细胞通过胞吐过程分泌的一类粒径为30~200 nm的囊泡,其组成包括脂质双分子层以及其内部包裹的细胞来源的蛋白质、核糖核苷酸(RNA)和脱氧核糖核苷酸(DNA)等生物分子。作为一种细胞间交流的重要方式,外泌体在一系列生理和病理过程中起着至关重要的作用。由于体液环境复杂,加之自身体积小、密度低,外泌体的富集与分离对于其后续分析和功能研究至关重要。该文介绍了外泌体的研究策略、表征手段及生物学功能和临床应用研究进展,特别对外泌体的提取方法进行了详细介绍,并加以系统评述。  相似文献   

11.
Hydrothermal treatment of CuCl2·2H2O, MoO3, and 3,4′-dipyridylketone (3,4′-dpk) in 1:1:2 mole ratio afforded the new mixed metal oxide phases [Cu2(MoO4)2(3,4′-dpk)(H2O)] (1) or [Cu4(3,4′-dpk)4(Mo8O26)] (2), depending on the pH of the initial reaction mixture. Compound 1 possesses unique one-dimensional (1-D) [Cu2(MoO4)2(H2O)]n ribbons constructed from the linkage of {CuII4O6} tetrameric units through isolated [MoO4]2- tetrahedra. These ribbons in turn are connected into a two-dimensional (2-D) coordination polymer structure by tethering 3,4′-dpk ligands. Compound 2, containing monovalent copper ions, manifests an unprecedented “X-rail” 1-D extended structure with (628)4(66) topology formed from the bracketing of discrete [β-Mo8O26]4- anions by four chains. The variable temperature magnetic susceptibility behavior of 1 was fit to a linear tetramer model, with g=2.03(3), J1=25.8(7) cm-1 and J2=−46(1) cm-1. Antiferromagnetic inter-tetramer interactions (zJ′=−0.21(3) cm-1) were also evident. Crystallographic data: 1 monoclinic, P21/c, a=10.3911(11) Å, b=6.9502(6) Å, c=22.958(2) Å, β=100.658(7)°, V=1629.5(3) Å3, R1=0.1256, and wR2=0.2038; 2 triclinic, a=10.9000(3) Å, b=11.7912(4) Å, c=13.5584(4) Å, α=102.482(2)°, β=102.482(2)°, γ=117.481(2)°, V=1450.98(8) Å3, R1=0.0428, and wR2=0.0630.  相似文献   

12.
13.
We have prepared new hyaluronan (HA) gadolinium diethylenetriaminepentaacetic acid (DTPA) conjugates that have potential as tumor specific contrast agents for magnetic resonance imaging. Conjugates were synthesized, starting with a high molecular weight HA or with HA oligomers, by an efficient 2-step procedure involving first, reaction of ethylenediamine with HA carboxylic acid groups and, second, covalent linkage of DTPA to aminated HA. The final polymers were compared in terms of molar masses and DTPA content. Tapping mode atomic force microscopy has been used to examine the morphology of the polymers in aqueous solution.  相似文献   

14.
This paper reviews the use of lipid vesicles as model membranes in capillary electrophoresis (CE). The history and utility of CE in the characterization of microparticles is summarized, focusing on the application of colloidal electromigration theories to lipid vesicles. For instance, CE experiments have been used to characterize the size, surface properties, enclosed volumes, and electrophoretic mobilities of lipid vesicles and of lipoprotein particles. Several techniques involving small molecules or macromolecules separated in the presence of lipid vesicles are discussed. Interactions between the analytes and the lipid vesicles - acting as a pseudostationary phase or coated stationary phase in electrokinetic chromatography (EKC) - can be used to obtain additional information on the characteristics of the vesicles and analytes, and to study the biophysical properties of membrane-molecule interactions in lipid vesicles and lipoproteins. Different methods of determining binding constants by EKC are reviewed, along with the relevant binding constant calculations and a discussion of the application and limitations of these techniques as they apply to lipid vesicle systems.  相似文献   

15.
The importance of sample preparation methods as the first stage in an analytical procedure is emphasised and examined. Examples are given of the extraction and concentration of analytes from solid, liquid and gas phase matrices, including solvent phase extractions, such as supercritical fluids and superheated water extraction, solid-phase extraction and solid-phase microextraction, headspace analysis and vapour trapping. The potential role of selective extraction methods, including molecular imprinted phases and affinity columns, are considered. For problem samples alternative approaches, such as derivatisation are discussed, and potential new approaches minimising sample preparation are noted.  相似文献   

16.
The high content (about 39%) of polymeric tannins in tamarind (Tamarindus indica L.) seed husk (TSH) was demonstrated, and an extract (crude TSE) with a high content (about 94%) of polymeric tannins was prepared from TSH with a one pot extraction using ethanol/water (3:2, v/v). The crude TSE was further purified with Sephadex LH20 to give one fraction (metTSE) eluted with methanol/water (3:2, v/v) and another (acTSE) eluted with acetone/water (3:2, v/v). The tannins of acTSE were established as polymeric proanthocyanidins (PA) by 13C NMR spectroscopy; this was further confirmed by IR and UV spectroscopy, n-BuOH/HCl and vanillin assays, and from HPLC pattern. The ratio of procyanidins to prodelphinidins was 2:3, and the average degree of polymerization of acTSE was 7. Galloylated flavan-3-ols were not detected in acTSE. The main ingredients of metTSE were confirmed to be polymeric PA by 13C NMR spectroscopy. The antioxidant activities using DPPH and ABTS assays were investigated. The IC50 values of acTSE were 4.2 +/- 0.2 (DPPH assay) and 6.2 +/- 0.3 microg/mL (ABTS assay).  相似文献   

17.
Liu CY 《Electrophoresis》2001,22(4):612-628
An overview of the most recent developments in column technology employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC), mainly for the separation of small molecules and ions, is presented. Particular emphasis is laid on permanent coating. The wall modification methods in CE include covalent modification, adsorbed coatings and polymeric coatings, while those in CEC include packed columns, open-tubular columns and fritless columns. A short discussion on the characterization and selectivity of the bonded phases is also given.  相似文献   

18.
Solar energy-driven semiconductor photocatalysis has gathered increasing interest in the field of energy and environmental applications. However, a vital problem that limits its application is that photocatalysis requires a continuous light source to perform redox reaction. The ability of keeping catalytic activity in the dark has been the ultimate goal for the wide application of photocatalysis. More and more efforts have been paid to develop photocatalysts to perform photocatalytic reactions under both light and dark conditions, which is so called “round-the-clock photocatalytic system” (RTCPS). RTCPS with an ability of energy storage can work well under both daytime and nighttime, which widely used in the removal of heavy metal ion, the degradation of organic pollutant, disinfection and hydrogen generation. The important potential of RTCPS necessitate timely reviews of the recent advances to streamline efforts. Thus, this review aimed to summarize the recent advances in RTCPS, including the mechanism, characterization techniques and applications. Moreover, future challenge and research direction on the mechanistic study, material design and potential applications are also discussed.  相似文献   

19.
Gagnon ZR 《Electrophoresis》2011,32(18):2466-2487
Over the past decade, dielectrophoresis (DEP) has evolved into a powerful, robust and flexible method for cellular characterization, manipulation, separation and cell patterning. It is a field with widely varying disciplines, as it is quite common to see DEP integrated with a host of applications including microfluidics, impedance spectroscopy, tissue engineering, real-time PCR, immunoassays, stem-cell characterization, gene transfection and electroporation, just to name a few. The field is finally at the point where analytical and numerical polarization models can be used to adequately describe and characterize the dielectrophoretic behavior of cells, and there is ever increasing evidence demonstrating that electric fields can safely be used to manipulate cells without harm. As such, DEP is slowly making its way into the biological sciences. Today, DEP is being used to manipulate individual cells to specific regions of space for single-cell assays. DEP is able to separate rare cells from a heterogeneous cell suspension, where isolated cells can then be characterized and dynamically studied using nothing more than electric fields. However, there is need for a critical report to integrate the many new features of DEP for cellular applications. Here, a review of the basic theory and current applications of DEP, specifically for cells, is presented.  相似文献   

20.
Several calcium silicate hydrate (C–S–H)-polymer nanocomposite (C–S–HPN) materials have been prepared by incorporating poly(acrylic acid) (PAA) into the inorganic layers of C–S–H during precipitation of quasicrystalline C-S-H from aqueous solution. The synthetic C–S–HPN materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), thermogravimetry (TG), differential thermogravimetry (DTG) and differential scanning calorimetry (DSC). The XRD peaks of C–S–HPN materials suggest the intermediate organizations presenting both intercalation of PAA and exfoliation of C–S–H. The SEM images of C–S–H and C–S–HPN materials with different PAA contents exhibit the significant differences in their morphologies. Effects of the material compositions on the thermal stability of series of C–S–HPN materials along with PAA and C–S–H has been studied by TG, DTG and DSC. Three significant decomposition temperature ranges were observed on the TG curves of all C–S–HPN materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号