首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel and efficient process is reported for fabrication of electroconductive, self-cleaning, antibacterial and antifungal cellulose textiles using a graphene/titanium dioxide nanocomposite. Cotton fabric was loaded with graphene oxide using a simple dipping coating method. The graphene oxide-coated cotton fabrics were then immersed in TiCl3 aqueous solution as both a reducing agent and a precursor to yield a fabric coated with graphene/titanium dioxide nanocomposite. The crystal phase, morphology, microstructure and other physicochemical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and UV-Vis reflectance spectroscopy. Electrical resistance, self-cleaning performance, antimicrobial activity and cytotoxicity of treated fabrics were also assessed. The electrical conductivity of the graphene/titanium dioxide nanocomposite-coated fabrics was improved significantly by the presence of graphene on the surface of cotton fabrics. The self-cleaning efficiency of the treated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. The results indicated that the decomposition rates of methylene blue were improved by the addition of graphene to the TiO2 treatment on fabrics. Moreover, the graphene/titanium dioxide nanocomposite-coated cotton samples had negligible toxicity and possessed excellent antimicrobial activity.  相似文献   

2.
Bao  Wen  Wang  Nan  He  Zhanhang 《Research on Chemical Intermediates》2021,47(7):3005-3023

In this paper, a series of Fe-doped TiO2 (Fe-TiO2) catalysts were prepared by ultrasonic hydrothermal method and were used to catalytic oxidation formaldehyde (HCHO) indoor at room temperature. Although the catalytic activity was improved compared with P25, but the final concentration of HCHO was still higher than the Chinese standard (GB 0.08 mg/m3), and the stability was restrict under room temperature. In order to improve the catalytic activity and stability of the catalysts, various concentrations of Ag were loaded on Fe-TiO2, and good catalytic oxidation effect was obtained and had a good repeat catalytic effect under room condition. UV–Vis, IR, PL, XRD, SEM, BET, XPS were used to characterize the materials. The results showed that the higher dispersion of active Ag, and the synergistic effect between Ag, Fe and TiO2 nanostructure were helpful to improve the catalytic oxidation ability of Ag@Fe-TiO2. In the repeat experiments, 0.6%Ag@0.3%Fe-TiO2 exhibited good catalytic activity and stability. The formaldehyde concentration was reduced to 0.05 mg/m3, after four rounds of tests, the formaldehyde concentration was still below 0.08 mg/m3, applying for long time indoor HCHO degradation at room temperature. Indicating the modification of Ag element can further promote the catalytic activity and stability of Fe-TiO2.

  相似文献   

3.
以医用纱布(medical gauze,MG)同时作为模板和还原剂,通过原位氧化还原反应,简便地制备了MG负载的MnO2纳米颗粒(MnO2 NPs/MG),并对其形貌、成分进行表征。结果表明,MnO2 NPs均匀地分散于MG纤维表面。结合MnO2纳米材料的吸附性能和MG复合材料的操作便捷性,将MnO2 NPs/MG进一步应用于亚甲蓝染料的去除。结果表明,在中性条件下,通过简单的浸泡搅拌,MnO2 NPs/MG对亚甲蓝的去除率可达85.09%,并且可以通过增大吸附材料用量与染料初始浓度的比例提高去除率。等温吸附和动力学研究证明,MnO2 NPs/MG对亚甲蓝的吸附符合Langmuir吸附等温模型和拟二级动力学模型。  相似文献   

4.
以医用纱布(medical gauze,MG)同时作为模板和还原剂,通过原位氧化还原反应,简便地制备了MG负载的MnO2纳米颗粒(MnO2 NPs/MG),并对其形貌、成分进行表征。结果表明,MnO2 NPs均匀地分散于MG纤维表面。结合MnO2纳米材料的吸附性能和MG复合材料的操作便捷性,将MnO2 NPs/MG进一步应用于亚甲蓝染料的去除。结果表明,在中性条件下,通过简单的浸泡搅拌,MnO2 NPs/MG对亚甲蓝的去除率可达85.09%,并且可以通过增大吸附材料用量与染料初始浓度的比例提高去除率。等温吸附和动力学研究证明,MnO2 NPs/MG对亚甲蓝的吸附符合Langmuir吸附等温模型和拟二级动力学模型。  相似文献   

5.
Zou  Rui  Li  Linhua  Yang  Lin  Lan  Jianwu  Liu  Hongyu  Dou  Baojie  Shang  Jiaojiao  Lin  Shaojian 《Cellulose (London, England)》2021,28(17):11081-11096

In this work, visible light response CeO2/CdS decorated cotton fabrics as durable and facile recyclable composite photocatalysts were fabricated for photo-degradation of methylene blue (MB). First of all, amino-functionalized CeO2/CdS heterojunctions were synthesized through a fast, efficient and low-cost co-precipitation method. Subsequently, the as-prepared CeO2/CdS heterojunctions were immobilized on aldehyde-functionalized cotton fabric surfaces as composite photocatalysts via "amine-aldehyde" chemical reaction. The surface microstructure and chemical composition of the CeO2/CdS decorated cotton fabric (CeO2/CdS-CF) were characterized by SEM, FTIR and XPS, respectively. The results showed that CeO2/CdS heterojunctions were successfully anchored and uniformly distributed on the surface of cotton fabric. Since the CeO2/CdS heterostructure with efficient photo-generated charge transfer and separation, the as-prepared CeO2/CdS-CF exhibited excellent photocatalytic activity, degrading MB under simulated sunlight irradiation with a degradation efficiency of 93.8% within 90 min. In addition, the degradation efficiency remained above 90.3% even after five successive degradation cycles, indicating the outstanding stability and recyclability of the obtained CeO2/CdS-CF. This work opened up a facile preparation way for the fabrication of durable and recyclable composite photocatalysts, and has a promising application in treating dye contaminated wastewater.

Graphic abstract
  相似文献   

6.
By combining the advantages of manganese dioxide nanoparticles (MnO2 NPs) and carbon nanofibers (CNFs), a biosensing electrode surface as a high-performance enzyme biosensor is designed in this work. MnO2 NPs and CNFs nanocomposites (MnO2–CNFs) were prepared by using a simple hydrothermal method and then were characterized by scanning electron microscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive spectrometry and electrochemisty. The results showed that MnO2 NPs are uniformly attached to the surface of CNFs. Meanwhile, the MnO2–CNFs nanocomposites as a supporting matrix can provide an efficient and advantageous platform for electrochemical sensing applications. On the basis of the improved sensitivity of MnO2–CNFs modified electrode toward H2O2 at low overpotential, a MnO2–CNFs based glucose biosensor was fabricated by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase and glucose. The constructed biosensor exhibited a linear calibration graph for glucose in a concentration range of 0.08–4.6 mM and a low detection limit of 0.015 mM. In addition, the biosensor showed other excellent characteristics, such as high sensitivity and selectivity, short response time, and the relative low apparent Michaelis–Menten constant. Analysis of human urine spiked with glucose at different concentration levels yielded recoveries between 101.0 and 104.8%.  相似文献   

7.
Optimization of curing cotton textiles through self-cleaning property constructs the main goal of the present study. Cotton fabrics with 0.1, 0.3, 0.5, 1 and 1.5 on weight of bath percent were cured by nano titanium dioxide (P25 Degussa) with cross-link and non cross-link methods. In this study, succinic acid was used as a cross-link agent to attach TiO2 to the cotton. The amount of loaded titania particles to cotton fabrics and the thermal behavior of cured samples were studied by the burning method and thermogravimetric analysis, respectively. Self-cleaning degree of cured samples, stained with natural and synthesized dyes under irradiation of 20 and 400 W UV lamps was investigated by a reflectance spectrophotometer. The structure and morphology of treated cotton fabrics were investigated using scanning electron microscopy and crystallinity of titania coatings by X-ray diffraction spectroscopy. The tearing strengths of titania-coated cotton fabrics before and after light irradiation were measured. Results showed that the stability of nano TiO2 coating and self-cleaning degree of treated samples with cross-link method were much higher than those of non cross-link method, and cotton cellulosic chains were not decomposed by the photocatalytic activity of titania.  相似文献   

8.
The superhydrophobic cotton fabrics were prepared by combining the coating of titanium dioxide (TiO2) with the subsequent dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) modification. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements revealed that the nanosized TiO2 sphere consisted of granular rutile. The TiO2 layer coated on the cotton altered both the surface roughness for enhancing the hydrophobicity and UV-shielding property. The cotton fabric samples showed excellent water repellency with a water contact angle as high as 162°. The UV-shielding was characterized by UV-vis spectrophotometry, and the results indicated that the fabrics could dramatically reduce the UV radiation. The photocatalytic progress showed that organic stains were successfully degraded by exposure of the stained fabric to UV radiation. Such multifunctional cotton fabrics may have potentials for commercial applications.  相似文献   

9.
This study discusses the possibility of using a corona discharge at atmospheric pressure and air RF plasma at low pressure for the cotton fibre activation prior to deposition of colloidal TiO2 nanoparticles in order to enhance antibacterial, UV protective and self-cleaning properties. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of TiO2 nanoparticles on the surface of cotton fibres. XPS elemental mapping indicated that TiO2 nanoparticles were more evenly distributed across the surface of untreated and corona pre-treated cotton fabrics in comparison with RF plasma pre-treated fabric. Atomic absorption spectroscopy measurements revealed that the equivalent total content of TiO2 in the cotton fabrics pre-treated by corona and RF plasma was 31% higher than in the fabric that did not undergo any treatment prior to loading of TiO2 nanoparticles. In order to achieve maximum bacteria (Gram-negative bacteria Escherichia coli) reduction, untreated cotton fabric had to be loaded with colloidal TiO2 nanoparticles twice, but only once following corona or RF plasma pre-treatment. Deposition of TiO2 nanoparticles onto cotton fabrics provided maximum UV protective rating of 50+. Extraordinary photocatalytic activity of TiO2 nanoparticles deposited onto cotton fabrics was proved by self-cleaning of blueberry juice stains and photodegradation of methylene blue in aqueous solution under UV illumination.  相似文献   

10.
Titanium oxide (TiO2) nanoparticles (NPs) in their two forms, anatase and rutile, were synthesized and deposited onto the surface of cotton fabrics by using ultrasonic irradiation. The structure and morphology of the nanoparticles were analyzed by using characterization methods such as XRD, TEM, STEM, and EDS. The antimicrobial activities of the TiO2–cotton composites were tested against Escherichia coli (Gram‐negative) and Staphylococcus aureus (Gram‐positive) strains, as well as against Candida albicans. Significant antimicrobial effect was observed, mainly against Staphylococcus aureus. In addition, the combination of visible light and TiO2 NPs showed enhanced antimicrobial activity.  相似文献   

11.
A novel environmentally friendly flame-retardant compound, diethyl 3-(triethoxysilanepropyl) phosphoramidate (DTP) was synthesized via a simple one-step procedure with good yield and characterized by FT-IR and 1H-NMR, 31P-NMR and 29Si-NMR. The synthesized compound was coated onto cotton fabrics with different levels of add-ons (5–17 mass%) using the traditional pad-dry-cure method. SEM and XPS were conducted to characterize the surfaces of the coated cotton fabrics. The XPS results showed that DTP was attached to cotton through covalent bond. Cone calorimeter test showed that the cotton fabric treated with DTP became less flammable due to the lower HRR, THR and CO2/CO ratio. The modified cotton fabrics exhibited efficient flame retardancy, which was evidenced by limiting oxygen index (LOI) and vertical flammability test. Cotton fabrics treated with DTP in 5–17 mass% add-ons had high LOI values of 23–32%. Thermogravimetric analysis results show that the usage of DTP promotes degradation of the cotton fabrics and catalyzes its char formation.  相似文献   

12.
Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde (HCHO) removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. Herein, flower-like hierarchical Pt/NiAl-LDHs catalysts with different [Ni2+]/[Al3+] molar ratios were synthesized via hydrothermal method followed by NaBH4 reduction of Pt precursor at room temperature. The flower-like hierarchical Pt/NiAl-LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles (NPs) approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiAl-LDHs with high dispersion. The as-prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO2 at room temperature. The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests, suggesting the high stability of the catalyst. Based on in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies, a reaction mechanism was put forward about HCHO decomposition at room temperature. This work provides new insights into designing and fabricating high-performance catalysts for efficient indoor air purification.  相似文献   

13.
MnO2/graphene oxide sheet composite (MnO2/GOS) has been co-electrodeposited on the thermally treated carbon paper (TTCP) in phosphate buffer solution containing GOS and KMnO4. The resulted samples have been characterized by scanning and transmission electron microscopy, Raman, X-ray diffraction, and X-ray photoelectron energy spectroscopy. The results show that the synthesized MnO2 may be δ-MnO2 and the morphology of MnO2/GOS is very different from that of MnO2, indicating that the introduction of GOS in electrolyte can influence the morphology during the deposition. The capacitive properties of the samples are investigated by using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The specific capacitance of MnO2 for MnO2/GOS can reach about 829 F g?1 at discharged current density of 1.0 A g?1 in 1 M Na2SO4 aqueous solution, which is larger than that of MnO2 deposited on TTCP. The composite of MnO2/GOS also exhibits excellent cyclic stability with a decrease of 18.5 % specific capacitance after 1,500 cycles.  相似文献   

14.
This study is aimed to highlight the possibility of engineering the multifunctional textile nanocomposite material based on the polyester (PES) fabric modified with colloidal Ag and TiO2 nanoparticles (NPs). The effects of concentration of NPs as well as the order of Ag and TiO2 NPs loading on antimicrobial, UV protective, and photocatalytic properties of PES fabrics were examined. The antimicrobial activity of differently modified PES fabrics was tested against Gram‐negative bacterium Escherichia coli, Gram‐positive bacterium Staphylococcus aureus, and fungus Candida albicans. The concentration of Ag colloid and the order of Ag and TiO2 NPs loading considerably affected the antimicrobial efficiency of PES fabrics. The fabrics provided maximum UV protection upon surface modification with Ag and TiO2 NPs. Ag NPs enhanced Ag NPs enhanced the photodegradation activity of TiO2 NPs and total photodegradation of methylene blue was achieved after 24 hr of UV illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
《中国化学快报》2023,34(3):107605
A series of α-MnO2 catalysts with various Mn valence states were treated by hydrogen reduction for different periods of time. Their catalytic capacity for formaldehyde (HCHO) oxidation was evaluated. The results indicated that hydrogen reduction dramatically improves the catalytic performance of α-MnO2 in HCHO oxidation. The α-MnO2 sample reduced by hydrogen for 2 h possessed superior activity and could completely oxidize 150 ppm HCHO to CO2 and H2O at 70 °C. Multiple characterization results illustrated that hydrogen reduction contributed to the production of more oxygen vacancies. The oxygen vacancies on the catalyst surface enhanced the adsorption, activation and mobility of O2 molecules, and thereby enhanced HCHO catalytic oxidation. This study provides novel insight into the design of outstanding MnOx catalysts for HCHO oxidation at low temperature.  相似文献   

16.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

17.
Preparation and characterization of lamellar magnesium hydroxide (Mg(OH)2) thin films on cotton fabrics are reported in this paper. Mercerized cotton fabrics were treated with citric acid, so carboxyl groups were introduced to the surface of the fabrics. Mg(OH)2 seeds were first adsorbed on the citric acid‐treated cotton fabrics and then Mg(OH)2 thin films grew on the fabric through secondary growth method. Kinetics and isotherm studies found that the adsorption of Mg(OH)2 seeds on citric acid‐treated cotton fabrics followed pseudo second‐order kinetic model and Langmuir isotherm. This indicated that Mg(OH)2 seeds adsorption was monolayer chemical adsorption driven by electric attraction between positively charged Mg(OH)2 seeds and ? COO? ions on the cotton fiber surface. The X‐ray diffraction (XRD) and SEM characterizations of the Mg(OH)2 thin films covered cotton fabrics found that standing flaky Mg(OH)2 crystals formed a shell of porous but continuous network on cotton fabric surface. Owing to the Mg(OH)2 thin film covering, the fabric had fireproof property, lower thermal conductivity and higher optical absorbance in the UV, Vis and IR regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A novel N-halamine precursor with tertiary amino group (5,5-dimethylhydantoinyl-3-ylethyl)-dimethylamine (DEADH), was synthesized and then covalently bonded onto cotton fabrics modified by 3-chloropropyltrimethoxysilane to form quaternarized N-halamine precursor grafted cotton fabrics which could be transferred to N-halamine structure upon exposure to dilute sodium hypochlorite solution. The grafted cotton fabrics were characterized by FT-IR, X-ray photoelectron spectroscopy, and field emission scanning electron microscope. The antimicrobial test showed that the cotton fabrics grafted with the quaternarized N-halamine were capable of 7-log inactivation of Staphylococcus aureus and Escherichia coli O157:H7 within 1 min of contact time. Very interestingly, it was found that the grafting process and following chlorination had almost no adverse effect on the tensile strength of cotton fabrics. Furthermore, the antimicrobial cotton fabrics exhibited good washing durability and stability.  相似文献   

19.
A potentially environmentally responsible dyeing procedure for ultra-deep shades on cotton was developed using a cationization method in combination with mercerization. The effects of both treatments on dyeing performance and colorfastness properties of cotton fabrics dyed with reactive dyes were analyzed individually and in combination. Both mercerization and cationization have been proved to be effective in increasing the depth of shade on cotton. The colorfastness properties, except colorfastness to wet crocking, of mercerized–cationized cotton fabrics dyed without salt were much better than untreated cotton dyed using a conventional dyeing procedure. Unlike untreated cotton fabrics, the concentration of Na2CO3 in the dyeing process of mercerized–cationized cotton fabrics was lowered from 20 to 5 g/L without compromising dye fixation and colorfastness properties. With low concentrations of dyes and Na2CO3 and no electrolyte in the dye bath effluent, the dyeing procedure of mercerized–cationized cotton fabrics for ultra-deep shades is potentially a more environmentally benign method than conventional dyeing with reactive dyes.  相似文献   

20.
Polyelectrolytes multilayer (PEM) films based on fully biobased polysaccharides, chitosan and phosphorylated cellulose (PCL) were deposited on the surface of cotton fabric by the layer-by-layer assembly method. Altering the concentration of PCL could modify the final loading on the surface of cotton fabrics. A higher PCL concentration (2 wt%) could result in more loading. Attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis directly showed that chitosan and PCL were successfully deposited onto the surface of cotton fabric. In the vertical flame test, the cotton fabric with 20 bilayers at the higher PCL concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry results showed that all coated cotton fabrics reduced the peak heat release rate (HRR) and total heat release (THR) relative to the pure one, especially for (CH0.5/PCL2)20, which showed the greatest reduction in peak HRR and THR. Thermogravimetric analysis results showed that the char residue at temperatures ranging from 400 to 700 °C was enhanced compared to that in the pure cotton fabric, especially in the case of higher PCL concentration (2 wt%). The work first provided a PEM film based on fully biobased polysaccharide, chitosan and PCL on cotton fabric to enhance its flame retardancy and thermal stability via the layer-by-layer assembly method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号