首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work proposes a scatter search (SS) approach to solve the fleet size and mix vehicle routing problem with time windows (FSMVRPTW). In the FSMVRPTW the customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. Computational results on 168 benchmark problems are reported. Computational testing revealed that our algorithm presented better results compared to other methods published in the literature.  相似文献   

2.
This paper presents a new sweep-based heuristic for the fleet size and mix vehicle routing problem. This problem involves two kinds of decisions: the selection of a mix of vehicles among the available vehicle types and the routing of the selected fleet. The proposed algorithm first generates a large number of routes that are serviced by one or two vehicles. The selection of routes and vehicles to be used is then made by solving to optimality, in polynomial time, a set-partitioning problem having a special structure. Results on a set of benchmark test problems show that the proposed heuristic produces excellent solutions in short computing times. Having a fast but good solution method is needed for transportation companies that rent a significant part of their fleet and consequently can take advantage of frequent changes in fleet composition. Finally, the proposed heuristic produced new best-known solutions for three of the test problems; these solutions are reported.  相似文献   

3.
The fleet size and mix vehicle routing problem consists of defining the type, the number of vehicles of each type, as well as the order in which to serve the customers with each vehicle when a company has to distribute goods to a set of customers geographically spread, with the objective of minimizing the total costs. In this paper, a heuristic algorithm based on tabu search is proposed and tested on several benchmark instances. The computational results show that the proposed algorithm produces high quality results within a reasonable computing time. Some new best solutions are reported for a set of test problems used in the literature.  相似文献   

4.
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.  相似文献   

5.
In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure.  相似文献   

6.
In this paper, we consider the open vehicle routing problem with time windows (OVRPTW). The OVRPTW seeks to find a set of non-depot returning vehicle routes, for a fleet of capacitated vehicles, to satisfy customers’ requirements, within fixed time intervals that represent the earliest and latest times during the day that customers’ service can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns. The model is solved using a greedy look-ahead route construction heuristic algorithm, which utilizes time windows related information via composite customer selection and route-insertion criteria. These criteria exploit the interrelationships between customers, introduced by time windows, that dictate the sequence in which vehicles must visit customers. Computational results on a set of benchmark problems from the literature provide very good results and indicate the applicability of the methodology in real-life routing applications.  相似文献   

7.
In this article we introduce the vehicle routing problem with coupled time windows (VRPCTW), which is an extension of the vehicle routing problem with time windows (VRPTW), where additional coupling constraints on the time windows are imposed. VRPCTW is applied to model a real-world planning problem concerning the integrated optimization of school starting times and public bus services. A mixed-integer programming formulation for the VRPCTW within this context is given. It is solved using a new meta-heuristic that combines classical construction aspects with mixed-integer preprocessing techniques, and improving hit-and-run, a randomized search strategy from global optimization. Solutions for several randomly generated and real-world instances are presented.  相似文献   

8.
The Mix Fleet Vehicle Routing Problem (MFVRP) involves the design of a set of minimum cost routes, originating and terminating at a central depot, for a fleet of heterogeneous vehicles with various capacities, fixed costs and variable costs to service a set of customers with known demands. This paper develops new variants of a tabu search meta-heuristic for the MFVRP. These variants use a mix of different components, including reactive tabu search concepts; variable neighbourhoods, special data memory structures and hashing functions. The reactive concept is used in a new way to trigger the switch between simple moves for intensification and more complex ones for diversification of the search strategies. The special data structures are newly introduced to efficiently search the various neighbourhood spaces. The combination of data structures and strategic balance between intensification and diversification generates an efficient and robust implementation, which is very competitive with other algorithms in the literature on a set of benchmark instances for which some new best-known solutions are provided.  相似文献   

9.
There have been several attempts to solve the capacitated arc routing problem with m vehicles starting their tours from a central node. The objective has been to minimize the total distance travelled. In the problem treated here we also have the fixed costs of the vehicles included in the objective function. A set of vehicle capacities with their respective costs are used. Thus the objective function becomes a combination of fixed and variable costs. The solution procedure consists of four phases. In the first phase, a Chinese or rural postman problem is solved depending on whether all or some of the arcs in the network demand service with the objective of minimizing the total distance travelled. It results in a tour called the giant tour. In the second phase, the giant tour is partitioned into single vehicle subtours feasible with respect to the constraints. A new network is constructed with the node set corresponding to the arcs of the giant tour and with the arc set consisting of the subtours of the giant tour. The arc costs include both the fixed and variable costs of the subtours. The third phase consists of solving the shortest path problem on this new network to result in the least cost set of subtours represented on the new network. In the last phase a postprocessor is applied to the solution to improve it. The procedure is repeated for different giant tours to improve the final solution. The problem is extended to the case where there can be upper bounds on the number of vehicles with given capacities using a branch and bound method. Extension to directed networks is given. Some computational results are reported.  相似文献   

10.
This paper presents a solution methodology for the heterogeneous fleet vehicle routing problem with time windows. The objective is to minimize the total distribution costs, or similarly to determine the optimal fleet size and mix that minimizes both the total distance travelled by vehicles and the fixed vehicle costs, such that all problem’s constraints are satisfied. The problem is solved using a two-phase solution framework based upon a hybridized Tabu Search, within a new Reactive Variable Neighborhood Search metaheuristic algorithm. Computational experiments on benchmark data sets yield high quality solutions, illustrating the effectiveness of the approach and its applicability to realistic routing problems. This work is supported by the General Secretariat for Research and Technology of the Hellenic Ministry of Development under contract GSRT NM-67.  相似文献   

11.
This paper presents a heuristic approach based on the POPMUSIC framework for a large-scale Multi Depot Vehicle Routing Problem with Time Windows derived from real-world data. POPMUSIC is a very powerful tool for tackling large problem instances. A Memetic Algorithm is used as an optimizer in the POPMUSIC framework. It is shown that a population-based search combined with decomposition strategies is a very efficient and flexible tool to tackle real-world problems with regards to solution quality as well as runtime.  相似文献   

12.
In this paper we use a scatter search framework to solve the vehicle routing problem with time windows (VRPTW). Our objective is to achieve effective solutions and to investigate the effects of reference set design parameters pertaining to size, quality and diversity. Both a common arc method and an optimization-based set covering model are used to combine vehicle routing solutions. A reactive tabu search metaheuristic and a tabu search with an advanced recovery feature, together with a set covering procedure are used for solution improvement. Our approach led to a robust solution method, generating solution quality that is competitive with the current best metaheuristics.  相似文献   

13.
In this paper, a two-stage metaheuristic based on a new neighborhood structure is proposed to solve the vehicle routing problem with time windows (VRPTW). Our neighborhood construction focuses on the relationship between route(s) and node(s). Unlike the conventional methods for parallel route construction, we construct routes in a nested parallel manner to obtain higher solution quality. Valuable information extracted from the previous parallel construction runs is used to enhance the performance of parallel construction. In addition, when there are only a few unrouted customers left, we design a special procedure for handling them. Computational results for 60 benchmark problems are reported. The results indicate that our approach is highly competitive with all existing heuristics, and in particular very promising for solving problems of large size.  相似文献   

14.
This paper introduces a class of cuts, called reachability cuts, for the Vehicle Routing Problem with Time Windows (VRPTW). Reachability cuts are closely related to cuts derived from precedence constraints in the Asymmetric Traveling Salesman Problem with Time Windows and to k-path cuts for the VRPTW. In particular, any reachability cut dominates one or more k-path cuts. The paper presents separation procedures for reachability cuts and reports computational experiments on well-known VRPTW instances. The computational results suggest that reachability cuts can be highly useful as cutting planes for certain VRPTW instances.  相似文献   

15.
The vehicle routing problem with flexible time windows and traveling times   总被引:1,自引:0,他引:1  
We generalize the standard vehicle routing problem by allowing soft time window and soft traveling time constraints, where both constraints are treated as cost functions. With the proposed generalization, the problem becomes very general. In our algorithm, we use local search to determine the routes of vehicles. After fixing the route of each vehicle, we must determine the optimal start times of services at visited customers. We show that this subproblem is NP-hard when cost functions are general, but can be efficiently solved with dynamic programming when traveling time cost functions are convex even if time window cost functions are non-convex. We deal with the latter situation in the developed iterated local search algorithm. Finally we report computational results on benchmark instances, and confirm the benefits of the proposed generalization.  相似文献   

16.
This paper describes a heuristic for the Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW). Unique to this problem are the so-called time windows, i.e. time slots during which the vehicle must arrive at the customer to deliver the goods. The heuristic builds on the well-known Clarke and Wright Savings method with an additional criterion that models an intuitive view of time influence on route building. Experiments show that this added criterion yields significantly better solutions to the VRSPTW than pure routing heuristics, and also compares favorably to other new heuristics, developed specifically for the VRSPTW.  相似文献   

17.
This paper develops simulated annealing metaheuristics for the vehicle routing and scheduling problem with time window constraints. Two different neighborhood structures, the λ-interchange mechanism of Osman and thek-node interchange process of Christofides and Beasley, are implemented. The enhancement of the annealing process with a short-term memory function via a tabu list is examined as a basis for improving the metaheuristic approach. Computational results on test problems from the literature as well as large-scale real-world problem are reported. The metaheuristics achieve solutions that compare favorably with previously reported results.  相似文献   

18.
This article presents a vehicle routing problem with time windows, multiple trips, a limited number of vehicles and loading constraints for circular objects. This is a real problem experienced by a home delivery service company. A linear model is proposed to handle small problems and a two-step heuristic method to solve real size instances: the first step builds an initial solution through the modification of the Solomon I1 sequential insertion heuristic, and the second step improves the initial solution through the Tabu search algorithm proposed; in both steps, the problems related to circle packing with different sizes and bin packing are solved jointly with the use of heuristics. Finally, the computing results for two different sets of instances are presented.  相似文献   

19.
Vehicle Routing Problems have been extensively analyzed to reduce transportation costs. More particularly, the Vehicle Routing Problem with Time Windows (VRPTW) imposes the period of time of customer availability as a constraint, a common characteristic in real world situations. Using minimization of the total distance as the main objective to be fulfilled, this work implements an efficient algorithm which associates non-monotonic Simulated Annealing to Hill-Climbing and Random Restart. The algorithm is compared to the best results published in the literature for the 56 Solomon instances and it is shown how statistical methods can be used to boost the performance of the method.  相似文献   

20.
In this paper we consider the problem of physically distributing finished goods from a central facility to geographically dispersed customers, which pose daily demands for items produced in the facility and act as sales points for consumers. The management of the facility is responsible for satisfying all demand, and promises deliveries to the customers within fixed time intervals that represent the earliest and latest times during the day that a delivery can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns such as vehicle capacity, delivery time intervals and all relevant costs. The model, which is a case of the vehicle routing problem with time windows, is solved using a new heuristic technique. Our solution method, which is based upon Atkinson's greedy look-ahead heuristic, enhances traditional vehicle routing approaches, and provides surprisingly good performance results with respect to a set of standard test problems from the literature. The approach is used to determine the vehicle fleet size and the daily route of each vehicle in an industrial example from the food industry. This actual problem, with approximately two thousand customers, is presented and solved by our heuristic, using an interface to a Geographical Information System to determine inter-customer and depot–customer distances. The results indicate that the method is well suited for determining the required number of vehicles and the delivery schedules on a daily basis, in real life applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号