首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

2.
以苯基磷酰二氯,对羟基苯甲醛及9,10-二氢-9-氧杂-10-磷杂菲(DOPO)为原料,合成了一种新型含磷阻燃剂——二[4-(次甲基-羟基-磷杂菲)苯氧基]苯基氧化磷(DOPO-PPO),其结构经1H NMR和IR表征。通过TGA和DTG研究了DOPO-PPO的热稳定性,热降解行为及成炭性能。结果表明:DOPO-PPO的起始热分解温度为210℃,在700℃时残炭为30.4%。以环氧树脂为基材,DOPO-PPO为阻燃剂,二氨基二苯硫砜为固化剂,制备了阻燃环氧树脂(3)。通过极限氧指数(LOI)和垂直燃烧(UL-94)测试了3的阻燃性能。结果表明:当DOPOPPO的添加量为12.0%(质量百分数,即312)时,阻燃级别为V-0级,LOI为34.0%。  相似文献   

3.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

4.
《化学通报》2021,84(10):1066-1073
本文采用多聚甲醛、γ-氨丙基三乙氧基硅烷和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物为原料,通过经典的Kabachnik反应制备了含磷、氮的笼型和半笼型结构的低聚倍半硅氧烷(N/P-POSS)。然后,通过与商品化MFE-711乙烯基树脂共混/共聚的方法制备得到改性乙烯基树脂。采用FT-IR、NMR、MALDI-TOF等对阻燃剂N/P-POSS进行了结构表征;采用氧指数(LOI)、UL-94垂直燃烧、锥形量热、热重分析以及动态力学分析等方法对乙烯基树脂固化物的阻燃性能和耐热性能进行了研究。结果表明,当N/P-POSS的添加量为4(wt)%时,乙烯基树脂固化物的LOI从19.5提高至27.5,并通过UL-94 V-1测试;并且热释放速率峰值和总热释放量分别降低了47.2%和20.9%;同时N/P-POSS的引入显著提高了乙烯基树脂的耐热性能,热分解温度提高了近10℃。采用扫描电镜和热重红外分析了其阻燃机理,主要为含磷自由基的猝灭效应,以及生成致密二氧化硅陶瓷相和含氮不可燃气体的阻隔作用,表现出了良好的磷、氮、硅协同阻燃效应。  相似文献   

5.
本文以可膨胀石墨(EG)和1-丁基-3-甲基咪唑六氟磷酸盐离子液体([BMIM]PF_6)为原料,在去离子水中通过绿色、简单的球磨法成功制备出了石墨烯负载离子液体杂化物(GnP@ILs),并对其结构组成进行表征.将GnP@ILs单独或与六苯氧基环三磷腈(HPCTP)混合加入到环氧树脂(EP)中,研究其对EP复合材料综合性能的影响.极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热测试结果表明,GnP@ILs能提高EP复合材料的阻燃性能,同时与HPCTP复配的EP复合材料(EP/7.2wt%HPCTP/1.8wt%GnP@ILs)的阻燃性能最好,LOI达到33.8%,并通过了UL-94V 0级.EP/7.2wt%HPCTP/1.8wt%GnP@ILs的热释放速率峰值和总热释放量分别降低了55.54%和44.28%.同时,[BMIM]PF_6的加入增强了阻燃剂与EP的界面相容性,EP复合材料的拉伸强度和抗冲强度均明显提高.  相似文献   

6.
六氯环三磷腈与对羟基苯甲醛经亲核取代反应制得六对醛基苯氧基环三磷腈(HAPCP);HAPCP经高锰酸钾氧化得六对羧基苯氧基环三磷腈(HCPCP);以苄基三乙基氯化铵为催化剂,HCPCP与环氧氯丙烷经开环闭环反应合成了一种新型的含磷环氧树脂(PN-EP),其结构和热稳定性经1H NMR,IR和TGA表征。结果表明,PN-EP的初始分解温度为278℃,在700℃时残炭量为40.5 wt%,具有很好的热稳定性和成炭性能。采用二氨基二苯甲烷对PN-EP进行固化,并通过极限氧指数(LOI)和垂直燃烧(UL-94)对其阻燃性能进行测试。结果表明:PN-EP固化物通过UL-94 V-0级测试,氧指数33%。  相似文献   

7.
本文以二氯化磷酸对甲基苯酯和10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)为原料,合成了一种新型聚磷酸酯阻燃剂聚磷酸-2-10-氢-9-氧杂-10-磷杂菲-10-氧化物基对苯二酚对甲苯酯(POTP),并采用傅里叶变换红外光谱(FTIR)和核磁共振(~(31)P-NMR,~1H-NMR和~(13)C-NMR)对其结构进行表征.将POTP与蒙脱土(MMT)及聚磷酸铵(APP)组成复合阻燃剂对环氧树脂(EP)进行阻燃改性,通过垂直燃烧(UL-94)、氧指数(LOI)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究其对EP的热性能和阻燃性能的影响.结果表明,当阻燃剂添加量为7%时, EP复合材料UL-94测试等级可达V-0级;当添加阻燃剂为9%时,其LOI值可达到27.6%,最大热释放速率(Pk-HRR)下降了50.1%,热释放总量(THR)下降了27.4%,其残炭量高达29%. CONE测试后的残炭形貌研究显示阻燃EP在高温下形成较稳定的致密膨胀炭层,能有效抑制烟毒性气体释放,隔绝可燃气体与空气的交换,从而提高阻燃EP在高温下的热稳定性和阻燃性能.  相似文献   

8.
合成了一种9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物——聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP), 以间苯二胺(m-PDA)为固化剂, 环氧树脂(EP)为基料, POPP为阻燃剂, 复配聚磷酸铵(APP), 制备了不同磷含量的阻燃环氧树脂. 利用极限氧指数(LOI)和垂直燃烧(UL94)实验表征了环氧树脂的阻燃性能; 以热重分析、 锥型量热和扫描电镜分析了阻燃环氧树脂的热性能和表面形态. 研究结果表明, 阻燃剂总加入量(质量分数)为5%时即可达到UL94 V-0级, 同时LOI值为27.7%; 当总加入量为15%, 即wPOPP=5%, wAPP=10 %时, 其LOI值可达到33.8%. 随着磷含量的增加, 阻燃环氧树脂的初始降解温度略有降低, 但高温下的残炭率明显增加. POPP/APP的加入在很大程度上降低了环氧树脂的热释放速率、 有效燃烧热、 烟释放量和有毒气体释放量. 阻燃环氧树脂在高温下形成比较稳定的致密膨胀炭层, 为底层的环氧树脂主体隔绝了分解产物及热量和氧气交换, 增强了高温下的热稳定性.  相似文献   

9.
通过双螺杆挤出机熔融共混制备了阻燃PA66/二乙基次磷酸铝(ADP)复合材料,采用极限氧指数(LOI)、垂直燃烧(UL94)测试、锥形量热仪(Cone)等研究了PA66/ADP材料的燃烧性能,同时还通过拉伸、弯曲强度测试考察了PA66/ADP复合材料的力学性能.研究表明:ADP添加量为8%时,该体系达到了UL94V-0级,LOI值由25. 3%提高到30. 2%. PA66/ADP材料的热释放速率峰值由1 168 k W/m2下降到535 k W/m2,添加ADP能够显著地增强成炭率,增强隔热作用.  相似文献   

10.
本文以DOPO(9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物)、苯甲醛和4,4’-二氨基二苯砜(DDS)为原料,一锅法合成了含磷、氮、硫的化合物PNS。以PNS为阻燃剂,双酚A型树脂DGEBA为基材,DDS为环氧固化剂,制备了阻燃环氧固化物PNS/DGEBA/DDS,研究了PNS对DGEBA阻燃性能的影响,并与商业化有机磷阻燃剂DOPO作对比,同时初步探讨了PNS的阻燃机理。研究结果表明,PNS呈现磷/氮/硫协效阻燃作用,具有比DOPO更优异的残炭生产促进作用、抑烟效果和阻燃作用。在体系磷含量为1.5 wt%时,PNS-1.5/DGEBA/DDS的LOI值高达33.2%,并获UL 94最高阻燃级别V-0级,总烟释放量相较于DOPO-1.5/DGEBA/DDS降低15.4%,DGEBA/DDS降低2.86%,呈现良好的抑烟性能。  相似文献   

11.
采用醛胺缩合反应,以4-(5,5-二甲基-1,3-二氧杂环己内磷酰基)苯甲醛(PCHO)分别与对苯二胺、乙二胺反应合成两种磷酸酯-亚胺双官能化合物阻燃剂(FR:N1,N4-二[4-(5,5-二甲基-1,3-二氧杂环己内磷酰氧基)苯基亚甲基]-1,4-苯二胺(PNB)和N1,N2-二[4-(5,5-二甲基-1,3-二氧杂环己内磷酰氧基)苯基亚甲基]-1,2-乙二胺(PNE)),研究了FR对4,4'-二氨基二苯砜(DDS)固化双酚A二缩水甘油醚型环氧树脂(DGEBA)体系的阻燃作用及阻燃机理。 研究发现FR的引入显著提高了DGEBA/DDS在700 ℃时的残炭率(Rc),同时提升了材料的阻燃性能,其中以乙二胺合成的PNE阻燃性能显著优于以苯二胺合成的PNB。 当磷添加质量分数为1.5%时,PNE-1.5/DGEBA/DDS在N2气下的Rc为35.1%,在空气下的Rc为14.4%,极限氧指数(LOI)为33.2%,并可达阻燃等级UL-94最高阻燃级别V-0级。 同时,PNE-1.5/DGEBA/DDS相较于DGEBA/DDS保持了弯曲强度和76%以上的冲击强度,机械性能显著优于PNB-1.5/DGEBA/DDS。 通过阻燃机理分析FR在DGEBA/DDS体系中具有凝聚相、气相及磷-氮协效共同作用的阻燃特点。 磷酸酯-亚胺双官能团化合物FR对环氧树脂体系具有良好的阻燃作用,其中PNE阻燃效率高、机械性能负面影响小,具有潜在应用价值。  相似文献   

12.
采用Hummers方法制备了氧化石墨烯(GO),并通过扫描电镜(SEM)和原子力显微镜(AFM)对GO微观形貌进行了表征.详细研究了GO与硅磷低聚物(DMS-DOPO)在环氧树脂(EP)力学性能和阻燃性能中的协同作用.万能材料试验测试结果表明,GO和DMS-DOPO分别对拉伸强度和断裂伸长率提高效果明显,二者协同后,可使EP拉伸强度和断裂伸长率分别提高17.1%和42.2%.采用热重分析(TG)、极限氧指数(LOI)、垂直燃烧(UL-94)、锥型量热(CONE)和SEM对EP及其阻燃材料的热性能、燃烧性能以及炭层微观形貌进行了表征.EP/DMS-DOPO/GO在600℃残留量为EP的5.2倍,比EP/DMS-DOPO和EP/GO分别提高4.4%和208.6%.EP/DMS-DOPO/GO的LOI值大于30,并能通过UL-94 V-0级别,燃烧过程中可形成内部结构疏松多孔、外表面致密的膨胀炭层.DMS-DOPO和GO协同后使EP热释放速率峰值由1154 k W·m-2降低到710 k W·m-2,总烟释放量降低30%.  相似文献   

13.
以双酚A型环氧树脂为基体、甲基纳迪克酸酐为固化剂、聚磷酸铵为膨胀阻燃剂、水热法制备的二氧化钛纳米管(TNTs)为阻燃协效剂,共混后交联固化制得了膨胀阻燃型环氧树脂复合材料。采用极限氧指数测试、垂直燃烧实验、扫描电镜和拉曼光谱分析了添加TNTs对环氧树脂膨胀阻燃材料的阻燃成炭协效作用。结果表明:TNTs的引入提高了环氧树脂膨胀阻燃材料的极限氧指数以及垂直燃烧UL-94测试评级。当TNTs质量分数为2%时,膨胀阻燃体系的极限氧指数达到28.4%,UL-94达到V-1级。同时,TNTs延缓了环氧树脂膨胀阻燃材料在高温下的热降解,提升了体系高温热稳定性和成炭性能。TNTs可以作为成炭的网络骨架,并促进高温下生成更多连续致密的炭层结构,且高温煅烧后残留的炭层具有更低的ID/IG(拉曼光谱在1 360cm-1及1 600cm-1处的吸收峰强度比)值,石墨化程度更高,炭层结构更加致密规整。  相似文献   

14.
采用有机蒙脱土(OMMT)和碳酸镍(NC)为阻燃协效剂,与膨胀型阻燃剂(IFR)三元体系协同阻燃线性低密度聚乙烯(LLDPE).采用热重分析(TGA)、氧指数(LOI)测试、UL-94燃烧测试和锥形量热测试(CONE)研究了LLDPE阻燃体系的热稳定性和燃烧性能;采用红外光谱分析(FT-IR)、数码相机和扫描电子显微镜(SEM)对燃烧残余物的结构和形貌进行了分析.结果表明:固定mnLLDPE/mIFR=7/3,当moMMT/m(LLDPE+IFR)=0.04时,阻燃体系的LOI为31.5%,通过UL-94 V-0级测试,LLDPE-IFR-OMMT的残炭率为15.09%,最大热释放速率(PHRR)相比于纯LLDPE降低了50%;向LLDPE-IFR-OMMT体系中添加NC,少量的NC就能显著增加体系的阻燃性能,当mNC/m(LLDPE+IFR)=0.02时,阻燃体系的LOI为32.7%,LLDPE-IFR-OMMT-NC的残炭率达到19.04%,PHRR相比于纯LLDPE降低了57%.OMMT和NC的加入能催化LLDPE-IFR成炭,形成致密的炭层,增加炭层的强度,从而提高复合材料的阻燃性能.  相似文献   

15.
聚磷酸铵的疏水改性及聚丙烯阻燃性能   总被引:2,自引:0,他引:2  
首先以γ-氨丙基三乙氧基硅烷(KH550)对聚磷酸铵(APP)进行表面化学修饰,然后用水解后的正硅酸四乙酯在其表面引发原位聚合,最后用十七氟癸基三乙氧基硅烷(氟硅烷)进行外表面修饰,制备了疏水聚磷酸铵(M-APP).M-APP的静态接触角为134°,表明M-APP具有很好的疏水性.通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对M-APP的结构及表面元素进行分析,结果表明,M-APP即为目标产物.将M-APP与三嗪成炭发泡剂(CFA)以质量比4∶1复配制备改性膨胀型阻燃剂(M-APP/CFA),并添加到聚丙烯(PP)中,制备阻燃PP(PP/M-APP/CFA).通过极限氧指数(LOI)和垂直燃烧(UL-94)研究了其阻燃性能,用热重分析(TGA)研究了材料的热降解行为,通过耐水测试研究了耐水性能,通过拉伸、弯曲和冲击强度研究了材料的力学性能,通过扫描电子显微镜(SEM)研究了改性膨胀型阻燃剂与聚合物的相容性.结果表明,当m IFR的添加量为23%时,PP/M-APP/CFA通过UL-94 V-0级,LOI值达到30.8%,且经过耐水测试后,依然能通过UL-94 V-0级,PP/M-APP/CFA的失重率仅为0.92%.在相同实验条件下,由APP制备的PP/M-APP/CFA材料在耐水测试后UL-94测试无级别,失重率达2.45%,表明APP的表面疏水改性大大提高了PP/M-APP/CFA材料的耐水性能.M-APP/CFA的加入提高了材料的热稳定性及成炭性能,燃烧时形成的膨胀炭层能很好地保护内部材料的降解和燃烧,从而提高了材料的阻燃性能.APP的改性提高了M-APP/CFA与PP的相容性,从而提高了材料的力学性能.  相似文献   

16.
以氯化钡提纯k-卡拉胶, 经过氧化氢降解, 通过反相乳液聚合的方式制备了一系列卡拉胶包覆聚磷酸铵(APP)阻燃微球(k-CM/APP); 将其加入到水性环氧树脂(EP)中, 制备了3种钢结构防火涂层EP2, EP3和EP4. 利用红外光谱(IR)、 扫描电子显微镜(SEM)及元素分析(EDS)对k-CM/APP的结构及形貌进行了表征. 利用极限氧指数(LOI)、 垂直燃烧(UL-94)、 背温测试法、 热重分析(TG)、 锥形量热(CONE)、 附着力测试、 IR和SEM等方法分析了涂层的阻燃、 隔热及力学性能. 结果表明, k-CM/APP(3/1)球形结构完整, 800 ℃时的残炭量高达59.5%. 与其它阻燃涂层体系相比, 添加了k-CM/APP(3/1)的EP3防火涂层的极限氧指数达到28.5%, UL-94达到了V-0级, 60 min防火涂层耐火温度为253 ℃. 相比于纯EP涂层, EP3涂层的热释放速率峰值降低了58.26%, 总热释放量降低了20.84%, 附着力达到8.74 MPa.  相似文献   

17.
利用锥形量热仪(CONE)和热重分析(TGA),并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对核(PSt/OMMT)-壳(PBA)结构纳米复合粒子(CSN)填充聚丙烯(PP)-乙烯-醋酸乙烯酯共聚物(EVA)复合材料及加入无卤复配阻燃剂制备的PP-EVA/CSN/聚磷酸铵(APP)/层状氢氧化镁铝(LDH)复合阻燃材料的阻燃性能及热降解行为进行了研究。结果表明,添加10%(wt)CSN可以提高PP-EVA复合材料的阻燃性能,且PP-EVA复合体系燃烧时的热释放速率、有效燃烧热减少,热稳定性增强。CSN与APP/LDH产生阻燃协同作用,使复合阻燃材料的阻燃性能、热稳定性能进一步提高。  相似文献   

18.
韩旭  张晓华  张松利  周恒 《化学通报》2021,84(10):1066-1073
乙烯基树脂(VE)具有优异的耐腐蚀特性及良好的机械强度,但由于其易燃烧的缺点,极大地限制了其在轨道交通、船舶运输等领域的应用。本文采用多聚甲醛(POM),γ-氨丙基三乙氧基硅烷(KH550)和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为原料,通过经典的Kabachnik反应制备了含磷、氮的笼型和半笼型结构的低聚倍半硅氧烷(N/P-POSS)。然后,通过与商品化MFE-711乙烯基树脂共混/共聚的方法制备得到改性乙烯基树脂。采用红外光谱(FTIR)、核磁共振氢谱(1H-NMR)和基质辅助激光解析飞行时间质谱(MALDI-TOF)对阻燃剂(N/P-POSS)进行了结构表征;采用氧指数(LOI)、UL-94垂直燃烧、锥形量热、热重分析(TGA)以及动态力学分析(DMA)等方法对乙烯基树脂固化物的阻燃性能和耐热性能进行了研究。结果表明,当N/P-POSS的添加量为4 wt%时,乙烯基树脂固化物的LOI从19.5提高至27.5,并通过UL-94 V-1测试。并且热释放速率峰值(PHRR)和总热释放量(THR)分别降低了47.2 %和20.9 %。同时N/P-POSS的引入显著提高了乙烯基树脂的耐热性能,热分解温度提高了近10 ℃。采用扫描电镜(SEM)和热重红外(TG-FTIR)分析了其阻燃机理,主要为含磷自由基的淬灭效应,以及生成致密二氧化硅陶瓷相和含氮不可燃气体的阻隔作用,表现出了良好的磷、氮、硅协同阻燃效应。  相似文献   

19.
王成乐  丁鹏  李娟 《高分子学报》2016,(11):1594-1598
将具有封闭空心结构的酚醛微球(HPMs)引入到聚丙烯/膨胀阻燃剂(PP/IFR)体系,燃烧时一方面依托PP/IFR形成膨胀多孔炭,另一方面通过HPMs形成空心炭微球,嵌入到前面多孔炭的骨架中,形成具有多层次孔的炭结构,从而调控膨胀炭层,进而调节材料的阻燃性能.通过极限氧指数(LOI)、垂直燃烧(UL-94)等研究了材料的阻燃性能;通过热失重分析(TGA)测试其热稳定性;采用红外热成像仪监测燃烧过程材料的表面温度,用扫描电镜(SEM)观察IFR、HPMs在基体中的分散行为及炭层结构.结果表明,少量HPMs在聚合物中分散得比较均匀.HPMs调控了膨胀炭层,使PP/IFR形成了表层炭致密,内层具有多层次孔的炭结构.这种优质的炭结构可以使样品表面温度迅速降低,从而有效提高PP/IFR体系的阻燃效率,使得PP在添加18 wt%IFR和1 wt%HPMs就可以通过UL-94 V0级别.  相似文献   

20.
利用极限氧指数、UL-94垂直燃烧试验、锥形量热器、拉伸测试等手段研究了碱式硫酸镁晶须(MOS)填充阻燃乙烯-醋酸乙烯酯共聚物(EVA)的燃烧性能和力学性能,并与氢氧化镁(MH)填充阻燃EVA进行了比较。实验结果表明:MOS是一种性能优良的无卤阻燃剂。当填充量相等时,与EVA/MH相比,EVA/MOS具有更高的极限氧指数和UL-94垂直燃烧级别,更低的热释放速率、有效燃烧热和质量损失速率,以及更高的力学强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号