首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first cellulose acetate fiber, commonly referred to as acetate, was produced in Europe in 1918 and on a large scale in the United States of America in 1924 making acetate the second man-made fiber to be produced.1 The usage of acetate worldwide peaked at a consumption of approximately 400 kilotons in the early 1970's.2 In the past three decades the use of acetate fiber has declined as fabric manufacturers moved to lower costs manmade fibers such as polyester. Manufacturers of acetate have worked aggressively to reduce their cost while maintaining product quality. These efforts have had some reward, leading to acetate's categorization as a niche fiber. As such, cellulose acetate represents less than one percent of the world's total fiber consumption as compared to cotton at over a third3 of the world's consumption and polyester at around a fourth.4 Acetate has been used and continues to be used in many different textile applications because of its attributes and good textile processing performance. It is used in woven fabrics, knits and braids. It is found in multiple applications including medical gauze, ribbons, coffin linings, home furnishings, woven velvets, tricot knits, men's linings, circular knits, woven satins, woven fashion, women's linings. It is found in a variety of deniers, lusters, colors, finishes, compactions types and package sizes. It is often blended with other fibers to make combination yarns.  相似文献   

2.
Applied Biochemistry and Biotechnology - A 25 L no-mix anaerobic digester was designed and fabricated. The digester was designed to act as liquid-solid separator. The sludges obtained from the...  相似文献   

3.
Continuous production of lactic acid in a cell recycle reactor   总被引:3,自引:0,他引:3  
The production of lactic acid from glucose has been demonstrated using a CSTR (continuous stirred-tank reactor) with cell recycle. Studies were conducted withLactobacillus delbrueckii at a fermentation temperature of 42°C and a pH of 6.25. A cell density of 140 g dry weight/L and a volumetric productivity of 150 g/L.h, with complete glucose consumption, were obtained. It was not possible to obtain a lactic acid concentration above 60 g/L because of product inhibition. A cell purge was not necessary to maintain high viability bacteria culture or to obtain a steady state. At steady state the net cell growth appeared to be negligible. The specific glucose consumption for cell maintenance was 0.33 g glucose/g cells-h.  相似文献   

4.
Hollow microspheres with ordered mesoporous walls are synthesised under ambient conditions by a simple procedure involving dilution and neutralisation of an aqueous tetraethoxysilane/cetyltrimethylammonium bromide reaction mixture.  相似文献   

5.
Microporous cellulose acetate membranes have been prepared from polymer–acetone solutions using a supercritical fluid phase inversion process in which CO2 acts as the non-solvent. Series of experiments were performed at various polymer concentrations, temperatures and pressures. The structure of the resulting membranes was analysed using scanning electron microscopy. We operated with polymer concentrations ranging between 5 and 40% (w/w) in acetone obtaining different pore dimensions and membrane structures. Increasing the percentage of polymer in the solution, the structure of the membranes changed from beads-like structure to cellular structure. Polymer concentration also influenced the mean diameter of the pores that ranged from 2 to 50 μm for polymer concentrations from 40 to 5% (w/w). We also tested membrane formation pressures between 100 and 200 bar and at temperature between 45 and 65 °C. Pressure influences the change in membrane structure from cellular to beads-like, whereas temperature has a minor influence on pore size: both the effects can be partially related to CO2 density. Cellulose acetate membrane formation mechanisms have also been discussed.  相似文献   

6.
A procedure for the continuous production of Cu(2)ZnSnS(4) (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used.  相似文献   

7.
A molecularly imprinted polymer membrane was prepared on a cellulose acetate support by the photopolymerization of methacrylic acid and a cross linker, ethyleneglycol dimethacrylate, in the presence of the template molecules of 6-benzyladenine (BA). The polymeric membrane morphologies were visualized by scanning electron microscopy and its selectivity was evaluated by a permeation test. The association ratio and apparent association constant of the complex formed between the methacrylic acid and BA were determined by cyclic voltammetry, and are 1 : 1 and 204.9, respectively. These results indicated that there existed some complementary cavities on the imprinted membrane corresponding in size, shape, and functional groups to the template molecules of BA. Hence, the imprinted membrane was able to recognize BA. It is predicted that this molecularly imprinted membrane may be applicable to the assay of BA or for the preparation of a molecularly imprinted polymer sensor for the determination of BA in plant samples. The text was submitted by the authors in English.  相似文献   

8.
Cellulose nanowhiskers (CNWs) were chemically modified by acetylating to obtain acetylated cellulose nanowhiskers (ACNWs) which could be well dispersed in acetone. The chemical modification was limited only on the surface of CNWs which was confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Surface substitution degree of ACNWs was evaluated to be 0.45 through X-ray photoelectron spectroscopy (XPS). Fully bioresource-based nanocomposite films were manufactured by incorporation of ACNWs into cellulose acetate (CA) using a casting/evaporation technique. Scanning electron microscope (SEM) demonstrated that ACNWs dispersed well in the CA matrix, which resulted in high transparency of all CA nanocomposites. The tensile strength, Young’s modulus and strain at break of all CA nanocomposites exhibited simultaneous increase in comparison with neat CA matrix. At the content of 4.5 wt% ACNWs, the tensile strength, Young’s modulus and strain at break of the CA nanocomposite film were increased by 9, 39, and 44 % respectively.  相似文献   

9.
Growth and lactic acid production ofLactobacillus delbreuckii were compared using glucose and lactose as carbon sources. A continuous-flow stirred-tank fermenter was coupled with a cross-flow filtration unit to permit operation at high-cell concentrations. At steady state, yeast extract requirements for lactic-acid production were lower when glucose was used as a substrate than with lactose fermentation. Once steady state was obtained, with glucose feed, it was possible to lower the yeast extract concentration without affecting biomass concentration and lactic acid production. The lacticacid concentration that inhibited cell growth and lactic acid production was found to depend on the choice of a carbon substrate.  相似文献   

10.
Experiments on electro-osmosis of water through a cellulose acetate membrane have been reported and the data analyzed in the light of nonequilibrium thermodynamics. The linear phenomenological equations have been found to be valid. Study of the directional dependence of phenomenological coefficients has revealed the anisotropic character of the membrane. Efficiency of energy conversion for both electro-osmosis and streaming potential has been calculated and the results have been analyzed in the light of thermodynamic theories.  相似文献   

11.
Hemostatic resorbent polymeric materials have been synthesized from water-soluble acetylcellulose, lagochilin, and lagohirsin. The substances obtained possess an effective hemostatic action and have a water-soluble form.Tashkent Institute of Chemical Technology. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 238–241, March–April, 1998.  相似文献   

12.
Novel drug-loaded cellulose acetate (CA) nanofibres were prepared by a modified coaxial electrospinning process, after which their zero-order drug release profiles were determined. Using 2 % (w/v) unspinnable CA solution as a sheath fluid, coaxial electrospinning can be conducted smoothly to generate ketoprofen (KET)-loaded CA nanofibres coated with a thin layer of blank CA. Scanning electron microscopy images demonstrated that nanofibres obtained from the modified coaxial process have a smaller average diameter, a narrower size distribution, more uniform structures, and smoother surface morphologies than those generated from single-fluid electrospinning. Transmission electron microscopy observations demonstrated that the nanofibres have a thin coating layer of blank CA on their surface with a thickness of ca. 15 nm. X-ray diffraction and differential scanning calorimetry verified that KET molecules in all of the nanofibres presented an amorphous state. Fourier transform infrared spectra demonstrated that CA has good compatibility with KET, which is brought about by hydrogen bonding. In vitro dissolution tests showed that the nanofibres coated with blank CA have no initial burst release effects and can provide a zero-order drug release profile over 96 h via a diffusion mechanism. The modified coaxial electrospinning method can provide new approaches in developing cellulose-based nano products with definite structural characteristics and improved functional performance.  相似文献   

13.
A rotating catalyst contact reactor (RCCR) was developed which consisted of palladized bacterial cellulose immobilized on acrylic discs for hydrodechlorination of pentachlorophenol (PCP). More than 99% of 40 mg L(-1) PCP was dechlorinated to phenol in the presence of hydrogen in batch mode at initial pH values of 5.5 and 6.5 within 2 h of reaction with stoichiometric release of free chloride. The rate of PCP dechlorination was found to be independent of rotational speed of discs. PCP (40 mg L(-1)) hydrodechlorination experiments were also conducted using RCCR in continuous flow mode at hydraulic retention times of 1 and 2 h. The average outlet PCP concentrations revealed that liquid phase in RCCR closely resembled that of a continuous flow complete mix reactor (CFMR). Approximately 12 and 11 L of 40 mg L(-1) PCP (pH 6.5) could be treated in RCCR with 99 and 80% efficiencies in batch and continuous flow modes, respectively without any appreciable loss of the catalytic activity. These results suggested reusability of palladized bacterial cellulose which in turn is expected to substantially reduce the cost of treatment process. Thus RCCR seems to have high potential for treatment of ground water contaminated with chlorinated organic compounds. Dried palladized bacterial cellulose has been used as a material for electrodes in a fuel cell. However, its application as a hydrodechlorination catalyst in a reactor operating under room temperature and atmospheric pressure has not been reported to the best of our knowledge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analyses suggested the irreversible deposition of palladium (Pd 0) particles on the bacterial cellulose fibrils.  相似文献   

14.
In this article, the radiation grafting of acrylamide on to cellulose acetate flat membranes using UV-irradiation on the initiator is described. The modified membranes thus obtained have been characterized by IR, DSC, and TGA. Their transport properties have been studied. The modified membranes exhibit higher salt rejection with slightly reduced water flux as compared with cellulose acetate membrane. The work is further extended to study the thermal stability of these modified membranes in a dry state. These modified membranes up to 330°C are stable.  相似文献   

15.
纤维素醋酸酯的均相合成   总被引:2,自引:0,他引:2  
纤维素的非均相反应取代不均匀、产率低。本文用纤维素在LiCl/DMAc溶液中的均相反应。制得了纤维素三醋酸酯(CTA)、纤维素二醋酸酯(CDA)、纤维素—醋酸酯(CMA),并对产品结构性能进行了表征。  相似文献   

16.
The photodegradation of cellulose acetate fibers by ultraviolet light in vacuo at 77°K and at ambient temperature was studied. Three kinds of light sources with different wavelengths between 2353 and 6000 Å were employed. ESR studies at 77°K show that several kinds of free radicals are produced from cellulose diacetate (CDA) and cellulose triacetate (CTA) fibers when irradiated with light of wavelength shorter than 2800 Å. Among these methyl radicals formed decayed within 210 min at 77°K. When the temperature was raised above 77°K, radical transformation occurred at 87°K and most of the free radicals decayed at 193°K, whereas the cellulosic radicals were stable at this and even at higher temperatures. Ultraviolet spectroscopy studies revealed that the main chromophores are the carbonyl function of the acetyl group and acetal groups in the polymer. The photodegradation of the polymers at ambient temperature resulted in the formation of gaseous products (mainly CO, CO2, and CH4), together with the loss of bound acetic acid content and sample weight. Decreases in viscosity and reduction of tensile strength and elongation were also observed in the irradiated samples, revealing that the overt effects of ultraviolet light on cellulose acetate fibers are interpreted in terms of free-radical reactions ultimately leading to main-chain and side-group scissions, unsaturation, and the formation of small molecule fragments. Among these, main-chain scission took place predominantly in CDA fiber and side-group scission in CTA fiber. The mechanism of the fundamental photochemical degradation processes of cellulose acetate fibers is elucidated.  相似文献   

17.
Conclusions Studies under the scanning electron microscope have shown that the cellulose acetate membranes used for reverse osmosis are high-molecular-weight condensation structures of the cellular type resulting from the dropwise separation of a new liquid phase under diffusional enrichment of the polymer solution by water, the solvent. The pore diameter, and the total pore volume, both diminish on approaching the membrane surface; the diffuse character of the active layer traces back to the concentration distribution resulting from vaporization of acetone, the volatile component, from the acetone- formamide cellulose acetate solution.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 111–115, January, 1977.  相似文献   

18.
The aim of this work was to synthesize and characterize cellulose microspheres with a particle size below 5 μm and narrow size distribution. After activation and functionalization with antibodies, these particles shall be applied as adsorbents in suspension-based extracorporeal blood purification systems, such as the Microspheres-Based Detoxification System. In the frame of this work such microspheres were developed and synthesized with reproducible properties. Besides using well-established methods for characterization of this kind of bead cellulose, additional procedures for the examination of its properties were developed and applied.  相似文献   

19.
Controlled grafting of MMA onto cellulose and cellulose acetate   总被引:1,自引:0,他引:1  
Homogeneous graft copolymerization of methyl methacrylate onto cellulose and cellulose acetate was carried out in various solvents and solvent systems taking ceric ammonium nitrate, tin (II) 2-ethyl hexanoate [Sn(Oct)2] and benzoyl peroxide as initiators. The effect of solvents, initiators, initiator and monomer concentration, on graft yield, grafting efficiency and total conversion of monomer to polymer were studied. Formation of Ce3+ ion during grafting in presence of CAN enhances the grafting efficiency. Methylene blue was used as a homopolymer inhibitor and controlled the molecular weight of the grafted polymer and its effect on grafting was also studied. In presence of MB, amount of PMMA homopolymer formation reduced and consequently grafting efficiency increased. The number average molecular weights and polydispersity indices of the grafted PMMA were found out by gel permeation chromatography. The products were characterized by FTIR and 1H-NMR analyses and possible reaction mechanisms were deduced. Finally, thermal degradation of the grafted products was also studied by thermo-gravimetric and differential thermo-gravimetric analyses.  相似文献   

20.
This paper reports the characterization of new synthesized chiral polymeric membranes, based on a cellulose acetate propionate polymer. The flux and permselective properties of the membrane were studied using 50 % ethanol solution of (R,S)-trans-stilbene oxide as feed solution. Scanning electron microscopy revealed the asymmetric structure of these membranes. The roughness of the surface was measured by atomic force microscopy. The resolution of over 97 % enantiomeric excess was achieved when the enantioselective membrane was prepared with 18 wt% cellulose acetate and 8 wt% cellulose acetate propionate in the casting solution of dimethyl formamide/N-methyl-2-pyrrolidone/acetone, at 20 °C and 55 % humidity, and a water bath at 10 °C for the gelation of the membrane. The operating pressure and the feed concentration of the trans-stilbene oxide were 275.57, 345.19, and 413.84 kPa and 2.6 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号