共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their ptype counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field. 相似文献
2.
用熔融退火结合放电等离子烧结法制备了In0.3Co4Sb12-xSex(x=0—0.3)方钴矿热电材料,探讨了In的存在形式,系统研究了Se掺杂量对结构和热电性能的影响.结果表明:In可以填充到方钴矿二十面体空洞处,过量In在晶界处形成InSb第二相,Se对Sb的置换使晶格常数减小,In填充上限降低;In0.3Co4Sb12-xSex样品呈n型传导,随着Se掺杂量的增大,载流子浓度降低,电导率下降,Seebeck系数增大,功率因子有所降低;由于在结构中引入了质量波动及晶格畸变,适量的Se掺杂可以大幅降低材料晶格热导率;样品In0.3Co4Sb12和In0.3Co4Sb11.95Se0.05的最大ZT值均达到1.0以上.
关键词:
掺杂
填充式方钴矿
热电性能 相似文献
3.
The thermoelectric performance of CdO ceramics was enhanced by simultaneously optimizing the electrical and thermal transport properties via a small amount of Zn doping(≤3%). The introduction of Zn can obviously increase the electrical conductivity of CdO due to the simultaneous increase of carrier concentration and mobility, and eventually results in an improvement in power factor. Zn doping is also effective in suppressing the thermal conductivity of CdO because of stronger phonon scatterings from point defects, Zn-riched second phase, and grain boundaries. A best ZT of about 0.45 has been achieved in the Cd_(1-x)Zn_xO systems at about 1000 K, which is comparable to the highest values reported for other n-type oxide TE materials. 相似文献
4.
采用熔融-淬火方法制备了Cu_(2.95)Ga_xSb_(1-x)Se_4(x=0,0.01,0.02和0.04)样品,系统地研究了Ga在Sb位掺杂对Cu_3SbSe_4热电性能的影响.研究结果表明,少量的Ga掺杂(x=0.01)可以有效提高空穴浓度,抑制本征激发,改善样品的电输运性能.掺Ga样品在625 K时功率因子达到最大值10μW/cm·K~2,比未掺Ga的Cu_(2.95)SbSe_4样品提高了约一倍.但是随着Ga掺杂浓度的进一步提高,缺陷对载流子的散射增强,同时载流子有效质量增大,导致载流子迁移率急剧下降.因此Ga含量增加反而使样品的电性能恶化.在热输运方面,Ga掺杂可以有效降低双极扩散对热导率的贡献,同时掺杂引入的点缺陷对高频声子有较强的散射作用,因此高温区的热导率明显降低.最终该体系在664 K时获得最大ZT值0.53,比未掺Ga的样品提高了近50%. 相似文献
5.
Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future. 相似文献
6.
在热电研究领域, Ge Se是一种二维层状结构具有较大带隙的半导体,本征载流子浓度低,热电性能差.在本工作中,采用熔融淬火结合放电等离子活化烧结工艺制备了一系列的Ge Se1–x Tex (x=0, 0.05, 0.15, 0.25,0.35, 0.45)多晶样品,研究了Te含量对Ge Se化合物物相结构和热电输运性能的影响规律.结果表明:随着Te含量的增加, Ge Se的晶体结构逐渐由正交相向菱方相转变,使得材料的带隙降低,载流子浓度和迁移率同步增加;同时,晶体对称性的提高增加了化合物的能带简并度,有效提高了载流子有效质量.在这些因素的共同作用下,菱方相Ge Se的功率因子比正交相Ge Se提高约2—3个数量级.此外,菱方相Ge Se具有丰富的阳离子空位缺陷以及铁电特性所导致的声子软化现象,这导致其晶格热导率比正交相Ge Se降低近60%.当Te含量为0.45时,样品在573 K取得最大热电优值ZT为0.75,是本征Ge Se样品的19倍.晶体结构工程是提升Ge Se化合物热电性能的有效途径. 相似文献
7.
用熔融法结合放电等离子快速烧结(SPS)制备出了单相的Sm和Ce复合掺杂的Skutterudite化合物SmmCenFe1.5Co2.5Sb12,研究了Sm和Ce复合掺杂总量对其热电性能的影响规律.结果表明:随着Sm和Ce复合掺杂总量的增加,p型SmmCenFe1.5Co2.5Sb12化合物的Seebeck系数增加、电导率和热导率降低.当掺杂总量相近时,和Sm、Ce单原子掺杂相比,Sm和Ce复合掺杂使Skutterudite化合物的热导率低10%—40%.Sm0.22Ce0.20Fe1.54Co2.46Sb11.89化合物的最大热电性能指数ZTmax值在775K时为0.84.
关键词:
复合掺杂
方钴矿
热电性能 相似文献
8.
Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping 下载免费PDF全文
The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm-1;and 33.9μW·mK-1,respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK-1;at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency. 相似文献
9.
Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet
By focused illumination at the wavelength of 800 nm using a femtosecond laser, the tris(2,2′-bipyridyl)ruthenium complex displayed
a two-photon excitation as observed by the quadratic dependence of the emission intensity on the incident laser power. Since
the oxidation of pyrrole is induced by the oxidative quenching of the excited state, polypyrrole can be formed by a continuous
illumination. The polymerization area showed a high spatial selectivity which can be scanned in the XYZ axis by a piezo device. In the present study, three-dimensional (3D) polypyrrole microstructures were formed in the transparent
polymer sheet. 相似文献
10.
The effects of biaxial strain on the electronic structure and thermoelectric properties of monolayer WSe_2 have been investigated by using first-principles calculations and the semi-classical Boltzmann transport theory. The electronic band gap decreases under strain, and the band structure near the Fermi level of monolayer WSe_2 is modified by the applied biaxial strain. Furthermore, the doping dependence of the thermoelectric properties of n-and p-doped monolayer WSe_2 under biaxial strain is estimated. The obtained results show that the power factor of n-doped monolayer WSe_2 can be increased by compressive strain while that of p-doping can be increased with tensile strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these two-dimensional transition metal dichalcogenides materials. 相似文献
11.
Lixing Luo Wanning Huang Canglei Yang Jing Zhang Qichun Zhang 《Frontiers of Physics》2021,16(3):33500
As high-performance organic semiconductors, π-conjugated polymers have attracted much attention due to their charming advantages including low-cost, solution processability, mechanical flexibility, and tunable optoelectronic properties. During the past several decades, the great advances have been made in polymers-based OFETs with p-type, n-type or even ambipolar characterics. Through chemical modification and alignment optimization, lots of conjugated polymers exhibited superior mobilities, and some mobilities are even larger than 10 cm2·V−1·s−1 in OFETs, which makes them very promising for the applications in organic electronic devices. This review describes the recent progress of the high performance polymers used in OFETs from the aspects of molecular design and assembly strategy. Furthermore, the current challenges and outlook in the design and development of conjugated polymers are also mentioned. 相似文献
12.
Yuan-Li HuangHsi-Wen Tien Chen-Chi M. Ma Chih-Chun TengYi-Hsiuan Yu Shin-Yi YangMing-Hsiung Wei Sheng-Yen Wu 《Applied Surface Science》2011,258(1):136-142
In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 × 104 Ω/□ to 2.65 × 103 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment. 相似文献
13.
研究了螯合电磷光聚合物PFBtpIrm的光致发光、电化学和电致发光特性,并通过优化器件结构提高聚合物的电致发光性能.发现在聚合物中加入PBD使发光效率降低;而加入PVK空穴传输层后,由于能量有效地转移到电磷光聚合物中,器件性能提高.基于器件ITO/PEDOT/PVK/ PFBtpIrm5/Ba/Al,在电流密度为10.0mA/cm2时,最大外量子效率为4.25%,饱和红光的色坐标为(0.69,0.29).
关键词:
电致磷光
聚合物发光二极管
电子传输材料
空穴传输材料 相似文献
14.
15.
Zinc oxide(ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy.The unique property,i.e.,high efficient light emission at ultraviolet band,makes ZnO potentially applied to the short-wavelength light emitting devices.However,efficient p-type doping is extremely hard for ZnO.Due to the wide band gap and low valence band energy,the self-compensation from donors and high ionization energy of acceptors are the two main problems hindering the enhancement of free hole concentration.Native defects in ZnO can be divided into donor-like and acceptorlike ones.The self-compensation has been found mainly to originate from zinc interstitial and oxygen vacancy related donors.While the acceptor-like defect,zinc vacancy,is thought to be linked to complex shallow acceptors in group-VA doped ZnO.Therefore,the understanding of the behaviors of the native defects is critical to the realization of high-efficient p-type conduction.Meanwhile,some novel ideas have been extensively proposed,like double-acceptor co-doping,acceptor doping in iso-valent element alloyed ZnO,etc.,and have opened new directions for p-type doping.Some of the approaches have been positively judged.In this article,we thus review the recent(2011-now) research progress of the native defects and p-type doping approaches globally.We hope to provide a comprehensive overview and describe a complete picture of the research status of the p-type doping in ZnO for the reference of the researchers in a similar area. 相似文献
16.
Ramos-Garcia R. Delgado-Macuil R. Iturbe-Castillo D. De Los Santos E. González Soriano Corral F. 《Optical and Quantum Electronics》2003,35(6):641-650
We report on the photoinduced anisotropy in the holographic recording in spiropyran doped polymers as a result of the photoizomerization of spiropyran into merocyanine. Photoizomerization is achieved with UV polarized light ( = 355 nm) from the third harmonic of Q-switched Nd:YAG laser. After UV illumination a strong and broad polarization-dependent absorption peak centered 600 nm appears. Absorption holograms were recorded with low power He–Ne lasers with 2.2% output diffraction efficiency for polarization parallel to the polarization of the UV laser. The extremely long lifetime of the merocyanine states (12 days in the dark) and their high resolution makes this material promising as an optical memory element. 相似文献
17.
18.
19.
Cyclic butylene terephthalate (CBT®) oligomers are a relatively new class of material and are capable of polymerizing in an entropically driven ring-opening polymerization into high-molecular-weight polymerized CBT (pCBT) in very short times, i.e., within minutes. The most important feature of CBT is its very low, water-like melt viscosity prior to polymerization which gives rise to an excellent impregnation of fibrous reinforcements in contrast to conventional, high viscous thermoplastic resins. This opens up new possibilities in the thermoplastic composite production since thermoplastic-based composites show some advantages over thermoset-based ones. Specifically, they have a higher toughness and impact strength and they can be welded, postformed, and recycled due to their thermoplastic nature. CBT has the potential to substitute thermoset matrices in fiber-reinforced composites and may solve some of the today´s recycling issues associated with thermoset-based composites. Moreover, the low melt viscosity of CBT enhances the dispersion of nano- or conductive particles and can yield superior nano- and conductive composites. This article reviews the recent advances in processing–structure–property relationship, physical and chemical modification of pCBT, as well as the preparation of fiber-reinforced pCBT composites, pCBT nanocomposites, and conductive pCBT composites. 相似文献
20.
Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling 下载免费PDF全文
Bulk n-type Bi2Te3 single crystals with optimized chemical composition were successfully prepared by a high temperature-gradient directional solidification method. We investigate the influence of alloy microstructure, chemical composition, and growth orientation on the thermoelectric transport properties. The results show that the composition of single-crystal Bi2Te3 alloy, along the c axis direction, could be slightly tuned by changing the growth rate of the crystal. At a rate of 18 mm/h, the formed Bi2Te3 crystal exhibits good thermoelectric properties. At 300 K, a maximum Seebeck coefficient of -245 μV/K and an electrical conductivity of 5.6 × 10 4 S/m are acquired. The optimal power factor is ob- tained as 3.3 × 10 -3 W/K2m, with a figure of merit of 0.74. It can be attributed to the increased tellurium allocation in the Bi2Te3 alloys, as verified well by the density functional theory caLculations. 相似文献