首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cationization of polymers has been regarded as an effective method to improve their performance for various applications. In this work, the cationization of poly vinyl alcohol (PVA) was investigated under different conditions, i.e., various glycidyl-trimethylammonium chloride (GTMAC) to PVA ratios, reaction temperatures, times, PVA and NaOH concentrations and solvent compositions. The results showed that the overall efficiency of the cationic modification was rather low, which was due to the hydrolysis of both GTMAC and cationic-modified PVA (CPVA) under the strong alkaline conditions employed. The results also showed that the optimum GTMAC/PVA ratio depended on the solvent composition. The cationization was confirmed by means of 1H NMR and FTIR analyses. The maximum efficiency in water was obtained under the conditions of 95 °C, 1 h, 0.5 (mol) GTMAC/PVA ratio, and 5% (mol) NaOH concentration, while that in the ethanol/DMSO mixture (1.25 v/v) was obtained under the conditions of 70 °C, 1 h, 0.5 (mol) GTMAC/PVA ratio, and 5% (mol) NaOH concentration. Additionally, the interaction of CPVAs with a silicon wafer (as a substrate) was determined by employing an atomic force microscope (AFM) in water and air.  相似文献   

2.
Chemical pretreatment combined with high-intensity ultrasonication was performed to disintegrate cellulose nanofibers from poplar wood powders. The cellulose content in each suspension was treated as the control variable because the suspension concentration significantly influences the properties of the resultant cellulose nanofibers via ultrasonic processing. The as-obtained cellulose nanofibers were characterized by fiber diameter distribution, crystal structure, and rheological analysis. An increase of not more than 1.2 % of the cellulose content resulted in finer nanofibers. Both storage modulus and loss modulus of cellulose nanofiber suspensions rapidly increased with increasing concentration because of the gradual formation of a stronger network structure. In addition, the dynamic mechanical behavior of suspensions with fiber contents lower than 0.8 % was affected by the frequency and temperature alteration in contrast with the suspension with higher fiber contents. The sol–gel transformation and the visco-elastic transition depend on the hydroxyl bonding and the cross-linking extent of cellulose nanofibers in various concentration environments.  相似文献   

3.
Sol–gel transition of cellulose solution in NaOH/urea aqueous solution with the addition of epichlorohydrin (ECH) was investigated by rheological means. The gelation was controlled by a synergy of chemical and physical cross-linking processes, namely, the etherification reaction between cellulose and ECH as well as the self-association and entanglement of cellulose chains via hydrogen bonding re-construction in NaOH/urea. The results revealed that the cross-linker concentration, cellulose concentration and temperature played important roles in the gelation behavior. The gel time decreased with increasing either ECH or cellulose concentration, and the gel temperature dropped from 38 to 28 °C with an increase of cellulose concentration from 4 to 6 wt%, i. e. easier gelation was reached with higher cross-linker concentration, cellulose concentration or temperature, since higher cross-linker or cellulose concentration led to more network junctions via chemical or physical cross-linking, while higher temperature was favorable to both the etherification reaction and re-construction of cellulose hydrogen bonds. The compressive modulus of cellulose/ECH hydrogels was improved a lot by increasing either cellulose or ECH concentration, indicating the chemical cross-linking obviously improved the mechanical property, on the other hand, the swelling property could be tunable by changing the gelation parameter. This work supplied useful information to the control and optimization of the structure and properties of cellulose based hydrogels.  相似文献   

4.
Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.  相似文献   

5.
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different molecular weights were prepared with cellulose and acrylonitrile in NaOH/urea aqueous solution under the homogeneous reaction. The rheological properties of water-soluble CECs as a function of concentration and molecular weight were investigated using shear viscosity and dynamic rheological measurements. Viscoelastic behaviors have been successfully described by the Carreau model, the Ostwald-de-Waele equation, and the Cox–Merz rule. The entanglement concentrations were determined to be 0.6, 0.85, and 1.5 wt% for CEC-11, CEC-7, and CEC-3, respectively. All of the solutions exhibited viscous behavior rather than a clear sol-gel transition in all tested concentrations. The heterogeneous nature of CEC in an aqueous solution was determined from the Cox–Merz rule due to the coexistence of single chain complexes and aggregates. In addition, the CEC aqueous solutions showed good thermal and time stability, and the transition with temperature was reversible.  相似文献   

6.
Cellulose nanofibers with a diameter of 70 nm and lengths of approximately 400 nm were fabricated from partly mercerized cotton fibers by acid hydrolysis. Morphological evolution of the hydrolyzed cotton fibers was investigated by powder X-ray diffraction, Fourier transform infrared analysis and field emission scanning electron microscopy. The XRD results show that the cellulose I was partially transformed into cellulose II by treatment with 15 % NaOH at 150° for 3 h. The crystallinity of this partially mercerized sample was lower than the samples that were converted completely to cellulose II by higher concentrations of NaOH. The intensities of all of the diffraction peaks were noticeably increased with increased hydrolysis time. Fourier transform infrared results revealed that the chemical composition of the remaining nanofibers of cellulose I and II had no observable change after acidic hydrolysis, and there was no difference between the hydrolysis rates for cellulose I or II. The formation of cellulose nanofibers involves three stages: net-like microfibril formation, then short microfibrils and finally nanofibers.  相似文献   

7.
The drying process in typical pulp production generates strong hydrogen bonding between cellulose microfibrils in refined cell walls and increases the difficulty in obtaining uniform cellulose nanofibers. To investigate the efficacy of alkaline treatment for cellulose nanofibrillation, this study applied a bead-milling method in NaOH solutions for the nanofibrillation of dried pulps. NaOH treatments loosened the hydrogen bonding between cellulose microfibrils in dried pulps and allowed preparation of cellulose nanofibers in 8 % NaOH with a width of approximately 12–20 nm and a cellulose I crystal form. Both the nanofiber suspensions prepared in 8 and 16 % (w/w) NaOH were formed into hydrogels by neutralization because of surface entanglement and/or interdigitation between the nanofibers. When the dried pulp was fibrillated in 16 % (w/w) NaOH, the sample after neutralization had a uniquely integrated continuous network. These results can be applied to the preparation of high-strength films and fibers with cellulose I crystal forms without prior dissolution of pulps.  相似文献   

8.
Polylactide (PLA)/cellulose nanofiber (CNF) biocomposites were prepared via solution casting and direct melt mixing. To improve the compatibility, a masterbatch of CNFs and poly(ethylene glycol) (PEG) (1:2) was also prepared. The effects of PEG on the morphology and properties of the biocomposites were investigated. The dispersion/distribution of nanofibers in PLA was improved when the masterbatch was used and the composites were prepared in solution. Substantial effects on the rheological properties of solution-prepared PLA/CNF/PEG composites were observed compared to composites containing no PEG, whereas for melt-prepared composites no significant changes were detected. Increased crystalline content and crystallization temperature were observed for the composites prepared via the masterbatch and solvent casting. The storage modulus of PLA was increased by 42 and 553% at 25 and at 80 °C, respectively, for the solution-based PEG-compatibilized composite containing 2 wt% nanofibers. Also, a better light transmittance was measured for the PLA/CNF/PEG composites prepared in solution.  相似文献   

9.

A new class of energetic biopolymers, which contain nitrate ester (O-NO2) and nitramine (N-NO2) as explosophoric groups, was successfully synthesized by surface modification of renewable pristine cellulose (PC) and microcrystalline cellulose (MCC) via epichlorohydrin-mediated amination followed by nitration process to produce new promising energetic aminated and nitrated cellulose and microcrystalline cellulose (APCN and AMCCN). Their structural, thermal, crystallinity and morphological features were examined and compared to those of the common cellulose nitrate. Furthermore, their energetic performances were evaluated by EXPLO5 V6.04 software. Experimental results confirm the successful chemical functionalization process to develop insensitive APCN and AMCCN with outstanding features such as nitrogen content of 15.01% and 15.39%, density of 1.692 g/cm3 and 1.708 g/cm3, and detonation velocity of 7526 m/s and 7752 m/s, respectively, which are significantly higher than those of the nitrated unmodified cellulosic biopolymers. The present investigation provides a suitable pathway to design new insensitive and energy-rich dense cellulosic biopolymers for potential application in high-performance solid propellants and composite explosives.

  相似文献   

10.
The properties and biodegradation behavior of blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate-glycidylmethacrylate copolymer (EVA-GMA), and their composites with cellulose microfibers (CF) were investigated. The blends and composites were obtained by melt mixing and the morphology, phase behavior, thermal and rheological properties of PLA/EVA-GMA blends and PLA/EVA-GMA/CF composite films were investigated as a function of the composition. The disintegrability in composting conditions was examined by means of morphological, thermal and chemical analyses to gain insights into the post-use degradation processes. The results indicated a good compatibility of the two polymers in the blends with copolymer content up to 30 wt.%, while at higher EVA-GMA content a phase separation was observed. In the composites, the presence of EVA-GMA contributes to improve the interfacial adhesion between cellulose fibers and PLA, due to interactions of the epoxy groups of GMA with hydroxyls of CF. The addition of cellulose microfibers in PLA/EVA-GMA system modifies the rheological behavior, since complex viscosity increased in presence of fibers and decreased with an increase in frequency. Disintegration tests showed that the addition of EVA-GMA influence the PLA disintegration process, and after 21 days in composting conditions, blends and composites showed faster degradation rate in comparison with neat PLA due to the different morphologies induced by the presence of EVA-GMA and CF phases able to allow a faster water diffusion and an efficient PLA degradation process.  相似文献   

11.

Complexation between biopolymers, chitosan cationic polyelectrolyte and sodium carboxymethyl cellulose anionic polyelectrolyte, was studied. The composition of the interpolymer complex formed was determined by conductometry and Fourier IR spectroscopy. The interpolymer complex and the initial complex-forming polymers were used for the first time as soil-structuring agents in urban soils. Treatment of urban soil with the interpolymer complex led to aggregation of soil particles and improved the water permeability of the soil.

  相似文献   

12.
通过电纺非溶剂调控的纤维素溶液, 制备出纤维素电纺纤维. 在N,N-二甲基乙酰胺(DMAc)-氯化锂(LiCl)溶解纤维素体系中, 以DMAc和N,N-二甲基甲酰胺(DMF)作为非溶剂, 添加到高浓度的纤维素溶液中制备电纺溶液. 考察添加非溶剂对纤维素溶液性质和电纺纤维形貌的影响. 结果表明, 添加非溶剂有助于提升纤维素溶液的可纺浓度, 获得分散性较好的电纺纤维, 其中DMF效果最好. 添加非溶剂降低了纤维素溶液的黏度, 使纤维素溶液可纺浓度提高; 添加非溶剂改变了电纺溶液的稳定性, 获得了分散良好的纳米纤维, 从而有助于纤维素射流在电纺过程中快速固化成型.  相似文献   

13.
Cellulose and chitin exist in nature as highly crystalline nanofibers. Previously, we reported preparing unique hydrogels from cellulose nanofibers by a simple NaOH treatment without use of any specific solvents or cross-linking agents. In the present study, a similar gel preparation was applied to β-chitin nanofibers extracted from purified squid pen powder. The crystal structure of chitin nanofibers was transformed from β-chitin to α-chitin by NaOH(aq) treatment above 30 wt%. The crystal conversion involving the interdigitation among adjacent nanofibers caused the formation of stable hydrogels with a α-chitin nanofiber network. The use of ethanol voided the dissolution during neutralization and enabled preparation of a higher crystalline hydrogel with high mechanical strength. It achieved a Young’s modulus of 16.6 MPa, a tensile strength of 7 MPa and a strain at break of 52.2 %, on average. Finally, we note that the shrinkage of the cellulose I and β-chitin nanofibers in aqueous NaOH solutions was caused by the release of tensile residual stress due to the intracrystalline swelling in NaOH solutions.  相似文献   

14.
In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.  相似文献   

15.
Biobased nanofibers are increasingly considered in purification technologies due to their high mechanical properties, high specific surface area, versatile surface chemistry and natural abundance. In this work, cellulose and chitin nanofibers functionalized with carboxylate entities have been prepared from pulp residue (i.e., a waste product from the pulp and paper production) and crab shells, respectively, by chemically modifying the initial raw materials with the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated oxidation reaction followed by mechanical disintegration. A thorough investigation has first been carried out in order to evaluate the copper(II) adsorption capacity of the oxidized nanofibers. UV spectrophotometry, X-ray photoelectron spectroscopy and wavelength dispersive X-rays analysis have been employed as characterization tools for this purpose. Pristine nanofibers presented a relatively low content of negative charges on their surface thus adsorbing a low amount of copper(II). The copper adsorption capacity of the nanofibers was enhanced due to the oxidation treatment since the carboxylate groups introduced on the nanofibers surface constituted negative sites for electrostatic attraction of copper ions (Cu2+). The increase in copper adsorption on the nanofibers correlated both with the pH and carboxylate content and reached maximum values of 135 and 55 mg g?1 for highly oxidized cellulose and chitin nanofibers, respectively. Furthermore, the metal ions could be easily removed from the contaminated nanofibers through a washing procedure in acidic water. Finally, the adsorption capacity of oxidized cellulose nanofibers for other metal ions, such as nickel(II), chromium(III) and zinc(II), was also demonstrated. We conclude that TEMPO oxidized biobased nanofibers from waste resources represent an inexpensive and efficient alternative to classical sorbents for heavy metal ions removal from contaminated water.  相似文献   

16.
Nanocomposites were produced with NaOH aqueous solution-treated microfibrillated cellulose (MFC) and phenolic resin, and the mechanical properties were compared with their microcomposite counterparts based on pulp fiber. Tensile tests showed that strong alkali-treated MFC nanocomposites with resin content around 20 wt.% achieved strain at fracture values two times higher than those of untreated MFC nanocomposites and five times higher than those of untreated pulp microcomposites. The improvement in work of fracture of alkali-treated MFC nanocomposites was attributed to the ductility of the nanofibers caused by transformations in the amorphous regions along the cellulose microfibrils.  相似文献   

17.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

18.
Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.  相似文献   

19.
A new family of amphoteric cellulose-based graft copolymers (CGADs), which were prepared by grafting acrylamide and dimethylaminoethyl methacrylate onto sodium carboxymethyl cellulose, have been investigated for their properties as multifunctional drilling-mud additives with respect to shale inhibition, rheological control and filtrate-loss control. For the CGADs investigated, the shale-inhibition ability improves but the filtration-control ability weakens with increasing content of cationic groups. An increase in the concentration of CGADs results in better inhibition and viscosity-building as well as lower fluid loss. The pH of the medium has an effect on the inhibitive property. A comparative study among CGADs and some commercial polymeric drilling-mud additives was also carried out. Received: 24 February 1999 Accepted in revised form: 10 May 1999  相似文献   

20.
Significant effect of cellulose nanofibers (CNFs) on cure‐induced phase separation in dynamically asymmetric system is reported. An epoxy/polysulfone blends with typical layered structure formation was chosen as the polymer matrix, and morphology evolution and rheological behavior of systems with different nano‐size fiber loadings upon curing reaction were investigated using optical microscopy and rheological measurement. CNF distributed uniformly in the polymer matrix and had good interaction with polymer chains. Curing reaction of epoxy was promoted by CNF, making the system gel and phase separate earlier. Meanwhile, system viscosity was increased with CNF addition, and the movement of polymer chains and component diffusion were constrained, as a result, the structure evolution process was slowed down. The CNF altered the final morphologies, resulting in refined structures with smaller characteristic length scales or even completely change the morphologies from the layered structures to a bicontinuous structure when the CNF concentration reached to a relatively high level. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1357–1366  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号