首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of choline oxidase (Chox) on the electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) was described. Result shows that the growth rate of PEDOT film varied with the addition of Chox quantity. The properties of PEDOT and PEDOT/Chox films were characterized by XPS and UV-vis absorption techniques. Meanwhile, a novel UV-vis absorbance method for the detection of choline was achieved. In a medium of 1/30 M phosphate buffer solution (pH 8.0), a very sensitive absorbance peak at 293 nm was observed. The linear relationship between UV-vis absorption intensity and choline concentration in a range from 1.0 × 10−6 to 5.1 × 10−5 M was obtained. This method has also been applied to determine choline in several feedstuff additive samples.  相似文献   

2.
Poly(3,4-ethylenedioxythiophene)/tungsten (PEDOT/W) composites were prepared by an in situ chemical oxidative polymerization of 3,4-ethylenedioxythiophene in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl- 3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). These polymer/metal hybrids (PEDOT/W) were subsequently characterized for their structural, crystalline, thermal and morphological properties by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The significant enhancement in properties can be attributed to the nanoscale particle size and uniform size distribution of PEDOT/W and the synergistic effect between the inorganic nano-W and organic PEDOT material.  相似文献   

3.
Thermoelectric (TE) performances are systematically investigated for the pellets of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with different organic additives and heating process as organic TE materials. The electrical conductivity, Seebeck coefficient and thermal conductivity versus temperature are determined, respectively. It is found that there is no distinct change for the Seebeck coefficient among each sample with the additions of dimethyl sulfoxide and ethylene glycol. The thermal conductivity measured in a wide range of temperature indicates that the PEDOT:PSS pellet have an extremely low value. The highest figure of merit (ZT= 1.75×10-3) is observed at 270K among the PEDOT:PSS pellets.  相似文献   

4.
李小娟  韦尚江  吕文辉  吴丹  李亚军  周文政 《物理学报》2013,62(10):108801-108801
采用气相聚合法制备了有机/无机杂化的硅/聚3, 4-乙撑二氧噻吩核/壳纳米线阵列(SiNWs/PEDOT)太阳能电池. 相对平面结构Si/PEDOT太阳能电池, SiNWs/PEDOT太阳能电池的能量转换效率提升了7倍, 达到3.23%.对比分析反射光谱、I-V曲线及外量子效率的实验结果, 发现SiNWs/PEDOT太阳能电池性能改进的主要原因可归结为: 气相聚合法能够有效地制备出SiNWs/PEDOT电池的核/壳纳米线阵列结构, 使得器件具有高光捕获、高比结面积和高电荷收集效率. 关键词: Si/PEDOT核/壳纳米线结构 太阳能电池 气相聚合  相似文献   

5.
Polymeric negative differential resistive (NDR) switching was explored based on the sandwiched structure of indium titanium oxide (ITO) coated polyethyleneterepthalate(PET)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/silver(Ag) through electrohydrodynamic atomization (EHDA) printing technique. The NDR switching in the fabricated device with the structure of ITO/PEDOT:PSS/Ag was analyzed through semiconductor device analyzer under polarity dependent bipolar sweeping voltage of less than ± 5 V ${\pm} 5~\mathrm{ V}$ . Effect of the current compliance (CC) in the NDR switching of the fabricated switch has been demonstrated. Multiple resistive switching sweeps were taken to scrutinize the robustness of the fabricated device over 100 cycles. The non-volatility of the as-fabricated device was checked against different time stresses over 2500 s. The switching mechanism is proposed to be due to the transition between PEDOT+ and PEDOT0 chains. The current conduction mechanism involved in the PEDOT:PSS based NDR switches is attributed to the ohmic conduction at lower voltages, while space charge limited conduction and NDR effects were prominent due to the injection of carriers at higher voltages.  相似文献   

6.
7.
A series of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) composite thin films with prescribed concentrations of poly(ethylene glycol) were prepared. The PEDOT–PSS pristine film and PEDOT–PSS/PEG films were studied using four-probe method, photoelectron spectroscopy and atomic force microscopy. The electrical conductivity of PEDOT–PSS/PEG hybrid films was found to be enhanced compared to the PEDOT–PSS pristine film, depending on the PEG concentration and molecular weight. XPS analysis and AFM results showed that PEG induces the phase separation between the PEDOT–PSS conducting particles and the excessive PSSNa shell. Simultaneously PEG may form hydrogen bond with sulfonic groups of PSSH, and hence weaken the electrostatic interactions between PEDOT cationic chains and PSS anionic chains. These resulted in the creation of a better conduction pathway among PEDOT–PSS particles, attributed to the improvement of conductivity.  相似文献   

8.
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold–palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm2 to 252 mJ/cm2. Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm2 and 402 mJ/cm2 for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 μm and 13.50 μm were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165–185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.  相似文献   

9.
In the line of elaboration of conducting polymer on oxidizable metal, electropolymerization of 3,4-ethylene-dioxythiophene (PEDOT) was performed in ammonium oxalate aqueous solution on nickel. The advantageous effect of the oxalate ions on the electropolymerization process as well as on the physical characteristics of the resulting polymer film has been evidenced. Among these properties, adhesion has been drastically improved. Hybride nanowires nickel/PEDOT have been elaborated to highlight the nickel-PEDOT adhesion. The protective effect of the PEDOT film against corrosion in NaCl is nevertheless very slight.  相似文献   

10.
有机半导体多层薄膜器件的性质很大程度上由有机-有机界面的传输性质所决定,但是现有的关于有机-有机界面的分析模型很难适用于实际器件的模拟.以Miller-Abrahams跳跃传导理论为基础,充分考虑有机-有机界面和金属-有机界面性质的不同,建立了一个新的描述有机-有机异质界面电荷传输的解析模型.结果表明有机异质界面的载流子传输不仅取决于界面的肖特基势垒,而且还取决于界面附近两边的电场强度和载流子浓度.此模型可用于有机半导体多层薄膜器件的电流密度、电场分布和载流子浓度分布的自洽计算. 关键词: 有机半导体 界面 载流子传输  相似文献   

11.
A quantum mechanical approach has been used to investigate on the potential for using two naturally occurring flavonoids: quercetin and luteolin as candidates for organic semiconductor. Selection of flavonoids enables to evaluate the effects of hydroxyl group structural features. The relationship between molecular packing and charge transport in flavonoids is presented. The calculated results indicate that quercetin should be an ideal candidate as high-performance p-type organic semiconductor material, while luteolin is predicted as n-type organic semiconductor material. The predicted maximum electron mobility value of quercetin is 0.075 cm2 V?1 s?1, which appears at the orientation angle near 91°/271° of conducting channel on the reference planes b–c. Theoretical investigation of natural semiconductors is helpful for designing higher performance electronic materials used in biochemical and industrial field to replace expensive and rare organic materials.  相似文献   

12.
为了有效利用石墨烯和导电聚合物材料,光雕石墨烯/聚3,4-乙撑二氧噻吩(LSG/PEDOT)复合薄膜通过一种灵巧的光雕工艺制备出来。在此复合薄膜中,每种组分对薄膜的电化学性能提升都有独特的贡献。循环伏安、交流阻抗及恒流充放电测试用来检测薄膜的电化学性能。结果显示,在引入PEDOT纳米颗粒后,LSG/PEDOT复合薄膜显示出更好的能量存储能力。复合薄膜的比容量达到64.33 F/cm3,是光雕石墨烯比容量(3.89 F/cm3)的20倍,复合薄膜经过1000次循环后仍能保持初始容量的94.6%。复合薄膜电化学性能的提升主要是由于引入的PEDOT纳米颗粒既阻挡了石墨烯的层层堆叠,又增加了整个薄膜的比表面积。此种灵活的光雕工艺还可以用来大规模制备超级电容器电极。  相似文献   

13.
徐真  李慧  陈立东 《中国物理 B》2022,31(2):28203-028203
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.  相似文献   

14.
为了有效利用石墨烯和导电聚合物材料,光雕石墨烯/聚3,4-乙撑二氧噻吩(LSG/PEDOT)复合薄膜通过一种灵巧的光雕工艺制备出来。在此复合薄膜中,每种组分对薄膜的电化学性能提升都有独特的贡献。循环伏安、交流阻抗及恒流充放电测试用来检测薄膜的电化学性能。结果显示,在引入PEDOT纳米颗粒后,LSG/PEDOT复合薄膜显示出更好的能量存储能力。复合薄膜的比容量达到64.33 F/cm3,是光雕石墨烯比容量(3.89 F/cm3)的20倍,复合薄膜经过1000次循环后仍能保持初始容量的94.6%。复合薄膜电化学性能的提升主要是由于引入的PEDOT纳米颗粒既阻挡了石墨烯的层层堆叠,又增加了整个薄膜的比表面积。此种灵活的光雕工艺还可以用来大规模制备超级电容器电极。  相似文献   

15.
 利用高温高压技术,制备了热电材料PbTe和PbSe的固溶体合金PbTe1-xSex,在室温下对其结构及电学性质进行了研究。X射线衍射(XRD)测试结果表明:PbTe1-xSex具有NaCl结构;晶格常数随着Se含量(x)的增加而减小;PbTe1-xSex的电阻率和Seebeck系数的绝对值随x的增大而减小;功率因子随x的增大先增大而后减小,当x=0.1时功率因子最高,达到21.7 μW/(cm·K2),比相同条件下制备的PbTe高20%。  相似文献   

16.
An aqueous dispersion of poly(3,4-ethylenedioxythiophene) (PEDOT) was prepared using a partially sulfonated poly(styrene-b-butadiene-b-styrene) (s-SBS) as a polyanion. For the preparation of s-SBS, poly(styrene-b-butadiene-b-styrene) was sulfonated to four different levels ranging from 44.1 to 64.8 mol%. These sulfonated polymers were characterized with IR spectroscopy and 1H NMR analysis to confirm sulfonation reaction. The preparation of the PEDOT complex was carried out through the chemical polymerization method in which the EDOT monomer starts to polymerize in the presence of s-SBS, resulting in an aqueous dispersion of PEDOT/s-SBS complex. The DC conductivities of PEDOT/s-SBS complexes were found to increase from 0.0003 to 0.05 s/cm as the sulfonation level of the corresponding s-SBS increases, which is consistent with the data recorded by UV–vis spectrophotometer. From the XPS experiments, it was concluded that the concentration of PEDOT-rich phase in the PEDOT/s-SBS increases as the sulfonation level of s-SBS increase, thus facilitating the charge transport along the doped PEDOT chains.  相似文献   

17.
张轶群  Shi Yi  濮林  Zhang Rong  郑有蚪 《物理学报》2008,57(8):5198-5204
利用包络函数的平面波展开法计算准二维纳米线阵列中的电子态,获得电输运系数表达式.同时,通过合理近似考虑边界散射对声子输运的影响,计算得到了晶格热导率.以Si/Ge体系为例,研究了纳米线阵列横向输运的热电特性.结果表明:结构优值与费米能级、纳米线直径及间距等参数相关.通过对结构参数的调整,纳米线阵列的横向输运可有效提高热电性能. 关键词: 热电性能 纳米线阵列 Seebeck系数 晶格热导率  相似文献   

18.
To investigate the conduction mechanism in an organic/inorganic heterojunction, poly(1.8-diaminocarbazole) (PDACz) on a p-type silicon substrate in a sandwich configuration were contacted with Al electrodes and temperature-dependent current–voltage measurements performed in the temperature range 280–380 K. It was found that the barrier height decreased and the ideality factor increased with decreasing temperature. Temperature and bias-dependent transition regimes were observed. These anomalies are explained by further analysis of the low- and high-field regions of the current–voltage curves. The trap density Hb and the characteristic trap energy Et were found to be 1.85 × 1017 cm?3 and 25 meV, respectively. Assuming that the trapped carrier density pt is higher than free-carrier density p, it is concluded that hole transport is dominated by space-charge-limited currents.  相似文献   

19.
Atta  Nada F.  Galal  Ahmed  Ali  Shimaa M.  Hassan  Samar H. 《Ionics》2015,21(8):2371-2382
Ionics - Poly(3,4-ethylenedioxythiophene) (PEDOT) modified with ferrocene carboxylic acid (FC1), ferrocene (FC2), and cobaltocene (CC) is introduced as a sensor electrode. FC or CC was...  相似文献   

20.
Xu  Guiyun  Liang  Shaoping  Zhang  Mingming  Fan  Jinshi  Feng  Jiuju  Yu  Xijuan 《Ionics》2017,23(11):3211-3218
Ionics - Carboxylated cellulose nanocrystals (CNCC) were synthesized by treating microcrystalline cellulose with ammonium persulfate. Silver nanoparticles (AgNPs) were prepared on the surface of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号