首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carboxylated cellulose nanocrystals (CCN) and cellulose nanocrystals (CNC) were prepared from borer powder of bamboo by two different kinds of procedures: one-step approach with ammonium persulfate for CCN and two-step approach with sulfuric acid for CNC. The obtained samples were characterizated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results show that the particles of CCN and CNC present spherical shape with diameters of 20–50 and 20–70 nm, respectively. The crystallinity of CCN and CNC is significantly improved after a series of chemical treatment, which is up to 62.75 and 69.84 %, respectively. The research indicates that the borer powder from bamboo could be an excellent raw material for manufacturing CNC in a low-cost and environmental-friendly way. Rational and sustainable utilization of the bamboo borer powder to develop new bioproducts holds great potential value for industry and offers many benefits and opportunities.  相似文献   

2.
Structural changes in cellulose fibers were elucidated for carboxymethylated fibers and fibers that are oxidized by periodate and chlorite. Non-fibrillated and partially fibrillated softwood, kraft fibers (SKF, m-SKF) were carboxymethylated to investigate the contribution of the S1 layer to the swollen fiber structures. Carboxymethylated non-fibrillated fibers (CMF) form balloon-like structures as they swell heterogeneously. When partially fibrillated SKF is carboxymethylated (m-CMF), the fibers do not exhibit this ballooning phenomenon due to the degradation of the S1 layer. Carboxymethylation disrupts the native cellulose crystalline structure without breaking the fibers apart. Periodate–chlorite oxidized fibers, on the other hand, swell homogeneously without disrupting the native cellulose I crystalline form. Periodate–chlorite oxidation damages all three secondary layers to the extent that any microfibril confinement caused by the swelling is removed. Each chemistry and mechanical treatment affects the cellulose fibers differently to yield various swollen structures.  相似文献   

3.
The non-biodegradable and non-renewable nature of plastic packaging has led to increasing interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanofillers). One such material is wheat gluten and its components. In this study we investigated nanocomposite materials prepared by casting a mixture of extracted glutenin from wheat gluten as the matrix and different concentrations of 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-carboxylated cellulose nanocrystals (C-CNC) as the reinforcing agent. The resulting films were characterized for their thermomechanical and barrier properties. Scanning electron microscopy (SEM) observations confirmed that the filler was homogeneously distributed in the matrix at the low and medium loadings, but some agglomerates and voids were visible at concentrations > 5 wt%. The mechanical properties showed that the presence of C-CNC (5 wt%) resulted in an increase (58.8 %) in tensile strength (TS) of glutenin films while at higher contents, the TS tended to decrease because of partial agglomeration of the filler. These effects were also reflected in the dynamic mechanical analysis (DMA) results and at a 5 wt% loading of nanocrystals the glutenin film gave the highest storage modulus (E′). The results obtained from differential scanning calorimetry (DSC) curves indicated that increasing the amount of C-CNC from 0 to 10 wt% led to an increase in glass transition temperature (Tg) from ?29.8 to ?23.7 °C. Although the use of C-CNC reduced the resistance to water vapor permeability (WVP) and water absorbance (WA), its incorporation up to 5 wt% resulted in composites with the lowest weight loss in water (WL). These results demonstrated that nanocellulose can reinforce glutenin polymers and that this system has potential as a packaging material, although much further study is needed.  相似文献   

4.
Cellulose - From a green chemistry perspective, cryogrinding of cellulose fibers conducted under mild conditions is introduced as a rapid, facile, and scalable methodology for the mechanochemical...  相似文献   

5.
Bio-based continuous fibers were prepared by melt spinning cellulose acetate butyrate (CAB), cellulose nanocrystals (CNC) and triethyl citrate. A CNC organo-gel dispersion technique was used and the prepared materials (2 and 10 wt% CNC) were melt spun using a twin-screw micro-compounder and drawn to a ratio of 1.5. The microscopy studies showed that the addition of CNC in CAB resulted in defect-free and smooth fiber surfaces. An addition of 10 wt% CNC enhanced the storage modulus and increased the tensile strength and Young’s modulus. Fiber drawing improved the mechanical properties further. In addition, a micromechanical model of the composite material was used to estimate the stiffness and showed that theoretical values were exceeded for the lower concentration of CNC but not reached for the higher concentration. In conclusion, this dispersion technique combined with melt spinning can be used to produce all-cellulose nanocomposites fibers and that both the increase in CNC volume fraction and the fiber drawing increased the mechanical performance.  相似文献   

6.
Cellulosic nanocomposite membranes were prepared by incorporation of cellulose nanocrystals (CNCs) into a hydroxypropyl cellulose (HPC) matrix using a mixing/evaporation technique. CNCs were obtained from filter paper using the sulfuric acid hydrolysis method with the aid of ultrasonication. The relationship between the microstructure and mechanical properties of the CNCs/HPC nanocomposite membranes was studied. Scanning electron microscopy showed that the CNCs were well dispersed in the HPC matrix, and the fracture surface demonstrated a fibrous characteristic. With increasing CNCs content, the tensile strength and Young’s modulus of the CNCs/HPC nanocomposite membranes gradually increased. At 5 wt% content of CNCs, the strength was increased by 525 % and the Young’s modulus by 124 % compared with pure HPC membrane. Moreover, the effect of the phase change of HPC on the mechanical properties of the CNCs5wt%/HPC nanocomposite membranes and the corresponding mechanism were also studied.  相似文献   

7.
8.
Softwood cellulose pulp was oxidized by a two-step oxidation process with sodium periodate followed by sodium chlorite at pH 5.0. The oxidized product was first separated into two fractions by centrifugation, and the supernatant was further separated in two fractions by addition of ethanol and centrifugation. Different levels of oxidation were performed on cellulose, and the mass ratio and carboxyl content of each fraction were determined. The first precipitate, which amount decreases with increasing oxidation level, consists of short fiber fragments (microfibrils) with length of 0.6–1.8 μm and width around 120 nm, which for sufficiently high oxidation levels, could readily be made into cellulose nanofibrils by stirring. The second precipitate (after alcohol addition) has a very high crystalline index of 91 % and contains rod-like particles with length of 120–200 nm and diameter around 13 nm, reminiscent of nanocrystalline cellulose. The supernatant contains water-soluble dicarboxylated cellulose, as proven by liquid C-13 NMR.  相似文献   

9.
Cellulose nanocrystals (CNC) were first isolated from kenaf bast fibers and then characterized. The raw fibers were subjected to alkali treatment and bleaching treatment and subsequent hydrolysis with sulfuric acid. The influence of the reaction time on the morphology, crystallinity, and thermal stability of CNC was investigated. Fourier transform infrared spectroscopy showed that lignin and hemicellulose were almost entirely removed during the alkali and bleaching treatments. The morphology and dimensions of the fibers and acid-released CNC were characterized by field emission scanning electron microscopy and transmission electron microscopy. X-Ray diffraction analysis revealed that the crystallinity first increases upon hydrolysis and then decreases after long durations of hydrolysis. The optimal extraction time was found to be around 40 min during hydrolysis at 45 °C with 65% sulfuric acid. The thermal stability was found to decrease as the hydrolysis time increased. The electrophoretic mobility of the CNC suspensions was measured using the zeta potential, and it ranged from −8.7 to −95.3 mV.  相似文献   

10.
This study investigates the potential of wood wastes, specifically post-consumer fiberboards, as a new source for cellulose nanocrystals (CNC). This underused resource has currently no commercially viable way to recycle it and so the volumes of fiberboard waste are growing rapidly. A sequential chemical fractionation was used to separate the three main constituents of wood, namely cellulose, hemicelluloses and lignin, and the non-wood components present in fiberboards, such as resins and finishes (e.g. varnishes, paints, plastics, laminates, etc.). Most of the non-cellulosic components and non-wood elements were removed by an alkali treatment followed by bleaching, resulting in a cellulosic fraction which is suitable for the further isolation of CNC by an acid hydrolysis step. The intermediate and final products were characterized by chemical composition, microscopic, spectroscopic and X-ray diffraction methods. The CNC obtained from wood waste are totally devoid of traces of contaminants and possess comparable characteristics and quality to those extracted from virgin wood fibers. The results indicate that fiberboard wastes can be used as promising alternative source for nanocelluloses production.  相似文献   

11.
The aim of this work was to synthesize and characterize cellulose microspheres with a particle size below 5 μm and narrow size distribution. After activation and functionalization with antibodies, these particles shall be applied as adsorbents in suspension-based extracorporeal blood purification systems, such as the Microspheres-Based Detoxification System. In the frame of this work such microspheres were developed and synthesized with reproducible properties. Besides using well-established methods for characterization of this kind of bead cellulose, additional procedures for the examination of its properties were developed and applied.  相似文献   

12.
Vulcanization is a vital process in rubber processing, it endows rubber with valuable physical and mechanical properties, making rubber a widely used engineering material. In addition to vulcanization agent, reinforcing fillers play a non-ignorable influence on the vulcanization of rubber nanocomposites. Herein, the effects of cellulose nanocrystals (CNCs) on the vulcanization of natural rubber (NR)/CNCs nanocomposite was studied. It was found that even though the addition of CNCs can effectively improve the dispersion of ZnO in NR matrix, the vulcanization of NR was inhibited. This may be attributed to the CNCs' adsorption of vulcanizing agents (DM, ZnO) and the acidic chemical environment on the surface of CNCs. In order to improve the vulcanization properties of NR/CNCs nanocomposite, tetramethyldithiochloram (TMTD) and triethanolamine (TEOA) were used as a combination accelerator and curing activator, respectively, and polyethylene glycol (PEG) was introduced to screen hydroxyl groups on the surface of CNCs to prohibit the CNCs' adsorption of vulcanizing agents. The results indicate that TMTD and TEOA effectively improved the vulcanization rate of NR/CNCs nanocomposite and increased the crosslink density by an order of magnitude. Subsequently, the tensile strength, tear strength, and so forth. of NR/CNCs nanocomposite were significantly improved. However, PEG hardly help to improve the vulcanization properties of NR/CNCs nanocomposite. In addition, the control samples without CNCs were prepared and characterized, the comparation between NR and NR/CNCs nanocomposite shows that the synergistic effect of crosslink density and CNCs' reinforcement more effectively improve mechanical properties of NR. This work not only elucidates the inhibiting mechanisms of CNCs on the vulcanization of NR, but also provides practical strategies for improving the vulcanization and properties of NR/CNCs nanocomposite. It may accelerate the application of CNCs as rubber reinforcing filler.  相似文献   

13.
Cellulose mesophases were obtained by preparing concentrated solutions of cellulose (20–55%) in a mixture of N-methyl-morpholine N-oxide (MMNO) and water. The anisotropy depends on four interconnected parameters: the temperature of the solution which, in general, must be lower than 90°C; the concentration of cellulose which must exceed 20%; a water content such that the mole ratio water/anhydrous MMNO is smaller than unity; and the degree of polymerization of the dissolved cellulose. The anisotropic cellulose solutions can readily be oriented during extrusion or casting thus giving fibers or films which upon regeneration exhibit high orientation.  相似文献   

14.
This study aims to extract and characterize cellulose nanocrystals (CNCs) from date pits (DP), an agricultural solid waste. Two methods were used and optimized for the cellulose nanocrystals (CNCs) extraction, namely the mechanical stirrer method (CNCs1) and the Soxhlet apparatus method (CNCs2) in terms of chemical used, cost, and energy consumption. The results showed that scanning electron microscopy revealed the difference in the morphology as they exhibit rough surfaces with irregular morphologies due to the strong chemical treatments during the delignification and bleaching process. Moreover, transmission electron microscopy analysis for CNCs reveals the true modification that was made through sulfuric acid hydrolysis as it presents cellulose microfibrils with a packed structure. Fourier transform infrared proved that the CNCs were successfully extracted using the two methods since most of the lignin and hemicellulose components were removed. The crystallinity index of CNCs1 and CNCs2 was 69.99%, and 67.79%, respectively, and both presented a high yield of CNCs (≥10%). Ultimately, both techniques were successful at extracting CNCs. Based on their cost-effectiveness and time consumption, it was concluded that method 1 was less expensive than method 2 based on the breakdown of the cost of each step for CNCs production.  相似文献   

15.
Extraction of cellulose and preparation of nanocellulose from sisal fibers   总被引:3,自引:0,他引:3  
In this work a study on the feasibility of extracting cellulose from sisal fiber, by means of two different procedures was carried out. These processes included usual chemical procedures such as acid hydrolysis, chlorination, alkaline extraction, and bleaching. The final products were characterized by means of Thermogravimetric Analysis (TGA), Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Scanning Electronic Microscopy (SEM). The extraction procedures that were used led to purified cellulose. Advantages and disadvantages of both procedures were also analyzed. Finally, nanocellulose was produced by the acid hydrolysis of obtained cellulose and characterized by Atomic Force Microscopy (AFM).  相似文献   

16.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

17.
18.
Like synthetic polymers, a natural polymer such as cellulose may crystallize in fibrous form from stirred solutions. In the present work, it is demonstrated that cellulose fibers can be formed by precipitation from dimethyl sulfoxide/paraformaldehyde solutions by two methods that involve different mechanisms of fiber formation, viz., (A) precipitation of cellulose by addition of nonsolvent to the stirred cellulose solution, and (B) precipitation of cellulose by coagulation of droplets of cellulose solution in a stirred precipitant. Both processes yield fibers with properties depending on the stirring speed and the coagulant strength. The molecular orientation and tensile strength of the fibers produced by method A was low, but increased with the stirring speed, while some fibers formed by method B reached extremely high orientation, depending on the thickness of the fibers. The two mechanisms of fiber formation are discussed on the basis of the experimental observations.  相似文献   

19.
20.
Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号