共查询到16条相似文献,搜索用时 15 毫秒
1.
A novel multi-responsive amino acid-based gelator is developed. 相似文献
2.
Injectable hydrogel is a kind of in situ gelling system but has its specificity on the process procedure, which requires a better control of gelation kinetics. Hydrogels with injectability under mild condition are preferred in the field of biomedicine, especially for drug delivery and tissue engineering, because of the favorable carrier property in three-dimension, biocompatibility, low invasive and adaptable shape for administration. Despite the advantages, the development of injectable hydrogels may also face some challenges to meet the various clinical requirements. In this review, we provide a brief summary on the recent progresses on the design, synthesis and evaluation of injectable hydrogels towards biomedical applications. 相似文献
3.
Injectable hydrogels with pH and glucose triggered drug release capability were synthesized based on biocompatible phenylboronic modified chitosan and oxidized dextran through the formation of covalent imine bond and phenylboronate ester. Rheological characterization demonstrated that the gelation rate was rapid, and the moduli of the hydrogels were able to be tuned with chemical composition as well as pH and glucose concentration of the polymer solution. Anticancer drugs could be incorporated inside the hydrogel through the in situ gel forming process and undergo a controlled release by altering pH or glucose concentration. The hydrogels had good biocompatibility with viable and proliferated cells cultured in the three dimensional matrix, and the cell proliferation was suppressed when a small amount of DOX was added, which is benefit for the application of the hydrogels as smart anticancer drug delivery system. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1235–1244 相似文献
4.
A new class of polylactic acid (PLA)/polyethylene glycol (PEG) copolymer reinforced with bacterial cellulose nanofibers (BC) was prepared using a solvent casting and particulate leaching methods. Four weight fractions of BC (1, 2.5, 5, and 10 wt%) were incorporated into copolymer via silane coupling agent. Mechanical properties were evaluated using response surface method (RSM) to optimize the impact of pore size, porosity, and BC contents. Compressive strength obtained for PLA/PEG-5 BC wt% was 9.8 MPa, which significantly dropped after developing a porous structure to 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PLA/PEG. Likewise, krenche and Hapli-Tasi model were employed to investigate the BC nanofiber reinforcement and BC orientation into PLA/PEG chains. The optimal parameters of the experiment results found to be 5 wt% for BC, 230 μm for pore size, and 80% for porosity. Scanning electron microscopy (SEM) micrograph indicates that uniform pore size and regular pore shape were achieved after an addition of BC-5% into PLA/PEG. The weight loss of copolymer-BC with scaffolds enhanced to the double values, compared with PLA/PEG-BC % without scaffolds. Differential Scanning Calorimetric (DSC) results revealed that the BC nanofiber improved glass transition temperature (T g) 57 °C, melting temperature (T m) 171 °C, and crystallinity (χ %) 43% of PLA/PEG reinforced-BC-5%. 相似文献
5.
Cellulose was dissolved in aq.(LiOH + urea) solution pre-cooled to –12.5°C and the wet films were prepared using ethyl alcohol coagulation bath. The gel cellulose films were dipped in 10 wt.% Cassia alata leaf extract solution and allowed the extract to diffuse into them. The leaf extract infused wet cellulose films were dipped in different concentrated aq. copper sulphate solutions and allowed for in situ generation of copper nanoparticles (CuNPs) inside the matrix. The morphological, structural, antibacterial, thermal, and tensile properties of dried cellulose/CuNP composite films were carried out. The presence of CuNPs was established by EDX spectra and X-ray diffraction. The composite films displayed higher thermal stability than the matrix due to the presence of CuNPs. Cellulose/CuNP composite films possessed better tensile strength than the matrix. The composite films showed good antibacterial activity against E.coli bacteria. We conclude that good antibacterial activity and better tensile properties of the cellulose/CuNP composite films make them suitable for antibacterial wrapping and medical purposes. 相似文献
6.
Cellulose - Removal of copper ions (Cu(II)) efficiently from water is crucial for water environment security. We use sustainable, low-cost, renewable cellulose derivatives (carboxymethylcellulose... 相似文献
7.
The functional paper holds significant potential in some special fields, which has achieved great development. Nevertheless, using cellulose paper to fabricate functional paper, which integrates transparency, robustness, flexibility, shape memory, and sustainability, remains a challenge. Herein, the vitrimer precursor was vacuum impregnated into cellulose paper and then in-situ polymerized to develop a vitrimer-cellulose paper (VCP) with transparency, shape manipulation, robustness, and sustainability. Taking advantage of the vitrimer’s dynamic performance, the resulting VCP demonstrated excellent optical transparency (transmittance of 84%, haze of 75%), enhanced mechanical strength (tensile strength of 80.5 MPa), chemical resistance, thermal-triggered shape manipulation, and reprocessing. Noteworthily, VCP possessed outstanding light management capability with effective light propagating and scattering performance. Furthermore, VCP laminate showed increased mechanical property with the increased layers, and it can be reprocessed to a bulk composite after crushing. These incorporated merits of VCP make a promising candidate for light management and sustainable building application. 相似文献
8.
Cellulose - In this study, the hydrogel was prepared by dissolving and regenerating poplar cellulose in NaOH/urea/water system. The TEMPO-oxidized cellulose hydrogels (TCH) were prepared using... 相似文献
9.
Biopolymer based hydrogels are highly adaptable, compatible and have shown great potential in biological tissues in biomedical applications. However, the development of bio-based hydrogels with high strength and effective antibacterial activity remains challenging. Herein, a series of Vanillin-cross-linked chitosan nanocomposite hydrogel interfacially reinforced by g-C 3N 4 nanosheet carrying starch-caped Ag NPs were prepared for wound healing applications. The study aimed to enhance the strength, sustainability and control release ability of the fabricated membranes. Starch-caped silver nanoparticles were incorporated to enhance the anti-bacterial activities The fabricated membranes were assessed using various characterization techniques such as FT-IR, XRD, SEM, mechanical testing, Gel fraction and porosity alongside traditional biomedical tests i.e., swelling percentage, moisture retention ability, water vapor transmission rate, oxygen permeability, anti-bacterial activity and drug-release of the fabricated membranes. The mechanical strength reached as high as 25.9 ± 0.24 MPa for the best optimized sample. The moisture retention lied between 87–89%, gel fraction 80–85%, and water vapor transmission up to 104 ± 1.9 g/ m2h showing great properties of the fabricated membrane. Swelling percentage surged to 225% for blood while porosity fluctuated between 44% ± 2.1% and 52.5% ± 2.3%. Oxygen permeability reached up to 8.02 mg/L showing the breathable nature of fabricated membranes. The nanocomposite membrane shown excellent antibacterial activity for both gram-positive and gram-negative bacteria with a maximum zone of inhibition 30 ± 0.25 mm and 36.23 ± 0.23 mm respectively. Furthermore, nanoparticles maintained sustainable release following non-fickian diffusion. The fabricated membrane demonstrated the application of inorganic filler to enhance the strength of biopolymer hydrogel with superior properties. These results envisage the potential of synthesized membrane to be used as wound dressing, artificial skin and load-bearing scaffolds. 相似文献
10.
An injectable, non‐hardening nanocomposite bone graft has been developed using a combination of nanohydroxyapatite as bioactive and osseointegrative material; P‐15 peptide‐modified poly(lactic‐ co‐glycolic acid) (PLGA) microspheres as biomimetic and osteoinductive agent; and PLGA–poly(ethylene glycol) (PEG)–PLGA as a carrier gel. Increase in lactic acid/glycolic acid ratio of PLGA–PEG–PLGA resulted in stronger gels with a wider gelation window. Addition of 2.5‐fold nanohydroxyapatite resulted in significant changes in injectability (3.5‐fold force of injection), swelling characteristics (2.5 times swelling index), rheological (shear viscosity from 2.1 × 10 1 Pa s for NC3_700 to 1.5 × 10 6 Pa s for NC3_73.52 and from 3.9 × 10 2 Pa s for NC8_700 to 3.76 × 10 6 Pa s for NC8_732; an increase in elasticity at the level of 1–1000 kPa), and thermal properties of the nanocomposites. A mechanistic study showed that nanohydroxyapatite exhibits a high degree of association with the gel and interferes with its gelation owing to changes in hydrogen bonding interactions between C=?O of polymer chains and P–OH groups of nanohydroxyapatite with water molecules of the gel. A schematic was developed demonstrating changes in bonding interactions among constituent phases with respect to nanohydroxyapatite content emphasizing the importance of material interactions while fabricating multi‐phase nanocomposites for various biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
11.
This research aims to fabricate and characterize chemically crosslinked CMC/PVP- co-poly (AMPS) based hydrogel for the sustained release of model drug metoprolol tartrate through the free radical polymerization technique. Box-Behnken Design was used to optimize CMC/PVP- co-poly (AMPS) hydrogel by varying the content of reactants such as; polymers (CMC and PVP), monomer (AMPS), and crosslinker (EGDMA). Carboxymethyl cellulose (CMC) was crosslinked chemically with AMPS with a constant ratio of PVP by the ethylene glycol dimethacrylate as the crosslinker in the presence of sodium hydrogen sulfite (SHS)/ammonium peroxodisulfate (APS) as initiators. After developing CMC-based hydrogels using different polymers, monomer, and crosslinker concentrations, this study encompassed dynamic swelling, sol–gel fraction, drug release and chemical characterizations such as FTIR, XRD, TGA, DSC, and SEM. In vitro drug release and swelling were performed at 1.2 and 6.8 pH to determine the sustained release pattern and pH-responsive behavior. These parameters depended on the crosslinker, polymer, and monomer ratios used in the formulation development. XRD, SEM, and FTIR showed the successful grafting of constituents resulting in the formation of a stable hydrogel. DSC and TGA confirmed the thermodynamic stability of the hydrogel. Hydrogel swelling was increased with an increase in the ratio of monomer; however, an increase in the ratio of polymer and crosslinker decreased the hydrogel swelling. In vitro gel fraction and drug release also depended on polymer, monomer, and crosslinker ratios. The fabricated CMC/PVP- co-poly (AMPS) hydrogels constituted a potential system for sustained drug delivery. 相似文献
12.
Carbon Nanotubes (CNTs) is among the most promising nanofiller materials that could be used for enhancing the properties of fiberglass/epoxy laminates for vehicle industries with less CO 2 emission (the key player in the climate change). However, usually the commercialized CNTs are supplied in the shape of heavily entangled tubes what leads to random dispersion of CNTs in the polymer matrix and decrease in their performance, especially at industrial scale. Within this frame, the chemical functionalization process was used in the present research to avoid this problem and to modify the surface properties of CNTs at the same time, thus improving compatibility and solubility of CNTs in epoxy solutions. Afterwards, probe sonicator (pre-dispersion), ultrasonic path (main dispersion), mechanical mixer (mixed CNTs/Epoxy solutions with hardener), and vacuum infiltration (to remove air bubbles) were used to disperse functionalized CNTs with different concentrations (in the range 0.05–0.4 wt%) in the epoxy-hardener solutions. Then, vacuum-assisted resin transfer technique followed by curing process were used to prepare 4 layers-fiberglass/CNTs/epoxy panels. The mechanical and impact properties of the prepared panels were tested according to ASTM D7025 and ISO 6603-2 standards, respectively. Also, thermal behavior of the panels was investigated using thermogravimetric (TG-DTG). Finally, the environmental performance in terms of greenhouse gas emission (GHGE) was evaluated according to ISO-14040 standard, taking the resulting strength and changes in density into account. The results showed that 0.35 wt% of FCNTs were enough to improve the strength of panels by ~60%, compared to pure sample. Which means that weight structure of vehicles can decrease by 23%. Also, fuel consumption and GHGE can decrease significantly by 16% and ~26%, respectively. In addition, thermal stability and energy impact absorption at the same concentration of CNTs were improved by 5% and 31%, respectively. 相似文献
13.
Hydrogels have been employed in regenerative treatments for decades because of their biocompatibility and structural similarity to the native extracellular matrix. Injectable hydrogels with interconnected porosity and specific internal structures are momentous for tissue engineering. Here, we develop a group of injectable hydrogels comprised of oxidized alginate (OA)/gelatin (GEL) strengthened by modifying the amount of Zn 2SiO 4 nanoparticles. The physicochemical characteristics of OA/GEL/Zn 2SiO 4 hydrogels were studied by mechanical strength, swelling ratio, and morphology. The outcomes revealed that the mechanical characteristics of hydrogels containing a higher amount of Zn 2SiO 4 (0.12 wt%) improved more than five times than the hydrogels fabricated without Zn 2SiO 4. The in vitro degradation outcomes manifested the degradation of the hydrogel comprising 0.12 wt% Zn 2SiO 4 NPs was slower than one without NPs, and remaining masses of hydrogels depend on different contents of Zn 2SiO 4 NPs. The hydrogel containing Zn 2SiO 4 NPs exhibited less cytotoxicity and good cell attachment than the hydrogels prepared without the nanoparticles. The cell viability and attachment show that the nanocomposite hydrogels are biocompatible (>96%) with great cell adhesion to osteosarcoma cell line MG63 depending on the presence of Zn 2SiO 4. The superior physical, chemical as well as mechanical characteristics of the hydrogels containing Zn 2SiO 4 NPs along with their cytocompatibility suggest that they can introduce as good candidates as scaffolds in tissue engineering. 相似文献
|