首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finding good (or even just feasible) solutions for Mixed-Integer Nonlinear Programming problems independently of the specific problem structure is a very hard but practically important task, especially when the objective and/or the constraints are nonconvex. With this goal in mind, we present a general-purpose heuristic based on Variable Neighborhood Search, Local Branching, a local Nonlinear Programming algorithm and Branch-and-Bound. We test the proposed approach on MINLPLib, comparing with several existing heuristic and exact methods. An implementation of the proposed heuristic is freely available and can employ all NLP/MINLP solvers with an AMPL interface as the main search tools.  相似文献   

2.
This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems.In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver.A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to 3 improvement over branch-and-bound is observed.  相似文献   

3.
利用割平面法求解具有多组最优解情形的整数线性规划问题时,会出现不能求出全部最优解的现象,这是割平面法的一个缺陷.针对割平面法的这种缺陷,基于构造非线性标量化函数时引入凸锥的思想,提出了一种割平面一线性交叉搜索方法,这种割平面一线性交叉搜索方法可以解决利用割平面法求解整数线性规划问题时出现的缺陷.最后,通过数值例验证了割平面一线性交叉搜索方法的可行性与有效性.  相似文献   

4.
In the context of convex mixed integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective nonlinear programming (NLP) subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness in the limit case. Some numerical results will be presented to illustrate the behavior of the methods under NLP subproblem inexactness.  相似文献   

5.
In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step is taken at each node and then branching is applied. A Sequential Cutting Plane (SCP) algorithm is used for solving the nonlinear programming problems by solving a sequence of linear programming problems. The proposed algorithm generates explicit lower bounds for the nodes in the branch and bound tree, which is a significant improvement over previous algorithms based on QP techniques. Initial numerical results indicate that the described algorithm is a competitive alternative to other existing algorithms for these types of problems.  相似文献   

6.
割平面法是求解整数规划问题常用方法之一.用割平面法求解整数规划的基本思路是:先用单纯形表格方法去求解不考虑整数约束条件的松弛问题的最优解,如果获得的最优解的值都是整数,即为所求,运算停止.如果所得最优解不完全是整数,即松弛问题最优解中存在某个基变量为非整数值时,就从最优表中提取出关于这个基变量的约束等式,再从这个约束式出发构造一个割平面方程加入最优表中,再求出新的最优解,这样不断重复的构造割平面方程,直到找到整数解为止.主要研究以下四个关键点:一是研究从最优表中提取出的、关于基变量的约束等式出发,通过将式中的系数进行整数和非负真分数的分解,从而得到一个小于等于0的另外一个不等式的推导过程;二是总结出从小于等于0的那个约束不等式出发构造割平面方程的四种方法;三是分析构造割平面方程的这四种方法相互之间的区别和联系;四是探讨割平面法的几何意义.通过对这四个方面的分析和研究,对割平面法进行透彻的剖析,使读者能够全面把握割平面法.  相似文献   

7.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

8.
A rigorous decomposition approach to solve separable mixed-integer nonlinear programs where the participating functions are nonconvex is presented. The proposed algorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-integer linear program) and two nonlinear programming problems (NLPs). A sequence of valid nondecreasing lower bounds and upper bounds is generated by the algorithms which converge in a finite number of iterations. A Primal Bounding Problem is introduced, which is a convex NLP solved at each iteration to derive valid outer approximations of the nonconvex functions in the continuous space. Two decomposition algorithms are presented in this work. On finite termination, the first yields the global solution to the original nonconvex MINLP and the second finds a rigorous bound to the global solution. Convergence and optimality properties, and refinement of the algorithms for efficient implementation are presented. Finally, numerical results are compared with currently available algorithms for example problems, illuminating the potential benefits of the proposed algorithm.  相似文献   

9.
We study the problem of packing equal circles in a square from the mathematical programming point of view. We discuss different formulations, we analyze formulation symmetries, we propose some symmetry breaking constraints and show that not only do they tighten the convex relaxation bound, but they also ease the task of local NLP solution algorithms in finding feasible solutions. We solve the problem by means of a standard spatial Branch-and-Bound implementation, and show that our formulation improvements allow the algorithm to find very good solutions at the root node.  相似文献   

10.
Convex Nonparametric Least Squares (CNLSs) is a nonparametric regression method that does not require a priori specification of the functional form. The CNLS problem is solved by mathematical programming techniques; however, since the CNLS problem size grows quadratically as a function of the number of observations, standard quadratic programming (QP) and Nonlinear Programming (NLP) algorithms are inadequate for handling large samples, and the computational burdens become significant even for relatively small samples. This study proposes a generic algorithm that improves the computational performance in small samples and is able to solve problems that are currently unattainable. A Monte Carlo simulation is performed to evaluate the performance of six variants of the proposed algorithm. These experimental results indicate that the most effective variant can be identified given the sample size and the dimensionality. The computational benefits of the new algorithm are demonstrated by an empirical application that proved insurmountable for the standard QP and NLP algorithms.  相似文献   

11.
We describe a new algorithm for a class of parameter estimation problems, which are either unconstrained or have only equality constraints and bounds on parameters. Due to the presence of unobservable variables, parameter estimation problems may have non-unique solutions for these variables. These can also lead to singular or ill-conditioned Hessians and this may be responsible for slow or non-convergence of nonlinear programming (NLP) algorithms used to solve these problems. For this reason, we need an algorithm that leads to strong descent and converges to a stationary point. Our algorithm is based on Successive Quadratic Programming (SQP) and constrains the SQP steps in a trust region for global convergence. We consider the second-order information in three ways: quasi-Newton updates, Gauss-Newton approximation, and exact second derivatives, and we compare their performance. Finally, we provide results of tests of our algorithm on various problems from the CUTE and COPS sets.  相似文献   

12.
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm.  相似文献   

13.
This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.  相似文献   

14.
Traditional deterministic global optimization methods are often based on a Branch-and-Bound (BB) search tree, which may grow rapidly, preventing the method to find a good solution. Motivated by decomposition-based inner approximation (column generation) methods for solving transport scheduling problems with over 100 million variables, we present a new deterministic decomposition-based successive approximation method for general modular and/or sparse MINLPs. The new method, called Decomposition-based Inner- and Outer-Refinement, is based on a block-separable reformulation of the model into sub-models. It generates inner- and outer-approximations using column generation, which are successively refined by solving many easier MINLP and MIP subproblems in parallel (using BB), instead of searching over one (global) BB search tree. We present preliminary numerical results with Decogo (Decomposition-based Global Optimizer), a new parallel decomposition MINLP solver implemented in Python and Pyomo.  相似文献   

15.
This paper considers a new class of stochastic resource allocation problems that requires simultaneously determining the customers that a capacitated resource must serve and the stock levels of multiple items that may be used in meeting these customers’ demands. Our model considers a reward (revenue) for serving each assigned customer, a variable cost for allocating each item to the resource, and a shortage cost for each unit of unsatisfied customer demand in a single-period context. The model maximizes the expected profit resulting from the assignment of customers and items to the resource while obeying the resource capacity constraint. We provide an exact solution method for this mixed integer nonlinear optimization problem using a Generalized Benders Decomposition approach. This decomposition approach uses Lagrangian relaxation to solve a constrained multi-item newsvendor subproblem and uses CPLEX to solve a mixed-integer linear master problem. We generate Benders cuts for the master problem by obtaining a series of subgradients of the subproblem’s convex objective function. In addition, we present a family of heuristic solution approaches and compare our methods with several MINLP (Mixed-Integer Nonlinear Programming) commercial solvers in order to benchmark their efficiency and quality.  相似文献   

16.
Solving mixed integer nonlinear programs by outer approximation   总被引:1,自引:0,他引:1  
A wide range of optimization problems arising from engineering applications can be formulated as Mixed Integer NonLinear Programming problems (MINLPs). Duran and Grossmann (1986) suggest an outer approximation scheme for solving a class of MINLPs that are linear in the integer variables by a finite sequence of relaxed MILP master programs and NLP subproblems.Their idea is generalized by treating nonlinearities in the integer variables directly, which allows a much wider class of problem to be tackled, including the case of pure INLPs. A new and more simple proof of finite termination is given and a rigorous treatment of infeasible NLP subproblems is presented which includes all the common methods for resolving infeasibility in Phase I.The worst case performance of the outer approximation algorithm is investigated and an example is given for which it visits all integer assignments. This behaviour leads us to include curvature information into the relaxed MILP master problem, giving rise to a new quadratic outer approximation algorithm.An alternative approach is considered to the difficulties caused by infeasibility in outer approximation, in which exact penalty functions are used to solve the NLP subproblems. It is possible to develop the theory in an elegant way for a large class of nonsmooth MINLPs based on the use of convex composite functions and subdifferentials, although an interpretation for thel 1 norm is also given.This work is supported by SERC grant no. SERC GR/F 07972.Corresponding author.  相似文献   

17.
A hybrid algorithm to solve large scale zero–one integer programming problems has been developed. The algorithm combines branch-and-bound, enumeration and cutting plane techniques. Mixed-integer cuts are generated in the initial phase of the algorithm and added to the L.P. Benders cuts are derived and used implicitly but, except for the cut from the initial LP, are not stored. The algorithm has been implemented on an experimental basis in MPSX/370 using its Extended Control Language and Algorithmic Tools. A computational study based on five well-known difficult test problems and on three practical problems with up to 2000 zer–one variables shows that the hybrid code compares favorably with MIP/370 and with results published for other algorithms.  相似文献   

18.
Convex envelopes of nonconvex functions are widely used to calculate lower bounds to solutions of nonlinear programming problems (NLP), particularly within the context of spatial Branch-and-Bound methods for global optimization. This paper proposes a nonlinear continuous and differentiable convex envelope for monomial terms of odd degree, x 2k+1, where k N and the range of x includes zero. We prove that this envelope is the tightest possible. We also derive a linear relaxation from the proposed envelope, and compare both the nonlinear and linear formulations with relaxations obtained using other approaches.  相似文献   

19.
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies is a useful tool for identifying biologically relevant gene groupings (DeRisi et al. 1997; Weiler et al. 1997). It is hence important to apply a rigorous yet intuitive clustering algorithm to uncover these genomic relationships. In this study, we describe a novel clustering algorithm framework based on a variant of the Generalized Benders Decomposition, denoted as the Global Optimum Search (Floudas et al. 1989; Floudas 1995), which includes a procedure to determine the optimal number of clusters to be used. The approach involves a pre-clustering of data points to define an initial number of clusters and the iterative solution of a Linear Programming problem (the primal problem) and a Mixed-Integer Linear Programming problem (the master problem), that are derived from a Mixed Integer Nonlinear Programming problem formulation. Badly placed data points are removed to form new clusters, thus ensuring tight groupings amongst the data points and incrementing the number of clusters until the optimum number is reached. We apply the proposed clustering algorithm to experimental DNA microarray data centered on the Ras signaling pathway in the yeast Saccharomyces cerevisiae and compare the results to that obtained with some commonly used clustering algorithms. Our algorithm compares favorably against these algorithms in the aspects of intra-cluster similarity and inter-cluster dissimilarity, often considered two key tenets of clustering. Furthermore, our algorithm can predict the optimal number of clusters, and the biological coherence of the predicted clusters is analyzed through gene ontology.  相似文献   

20.
As a continuation of [1], this paper considers implementation of ODE approaches. A modified Hamming's algorithm for integration of (ECP)-equation is suggested to obtain a local solution. In addition to the main algorithm, three supporting algorithms are also described: two are for evaluation of the right-hand side of (ECP)-equation, which may be especially suitable for certain kinds of (ECP)-equation when applied to large scale problems; the third one, with a convergence theorem, is for computing an initial feasible point. Our numerical results obtained by executing these algorithms on an example of (ECP)-equation given in [1] on five test problems indicate their remarkable superiority of performance to Tanabe's ODE version that is recently claimed to be much better than some well-known SQP techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号