首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abu-Bakr MS  Sedaira H  Hashem EY 《Talanta》1994,41(10):1669-1674
The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.  相似文献   

2.
《Analytical letters》2012,45(4):691-707
ABSTRACT

The complex equilibria of iron(III) with 2-hydroxy-3-pyridinol (HHP), and 2-mercapto-3-pyridinol (MHP) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaCIO4). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance pH-graphs. After considering all the different parameters a simple, rapid, sensitive and selective method for spectrophotometric determination of trace levels of iron(III) was proposed based on the formation of (Fe -MHP) complex at pH 2.5 (λmax = 640 nm, ? = l×104 L mol?1 cm?). The interference of a large number of foreign ions was investigated. The method has been applied successfully for the determination of iron content in some multivitamins with mineral preparations and infant milk products.  相似文献   

3.
Vladescu L  Lerch-Gurguta R 《Talanta》1993,40(7):1127-1129
Spectrometric study on the complexation of Fe(III) with an organic reagent obtained by coupling 3-methyl-1-phenyl-5-pyrazolone with diazotized 3-hydroxy-4-amino-benzene sulphonic acid was carried out in alkaline solutions. A 1:2 Fe(III): reagent water soluble complex is formed. The optimum pH is 9.0-11.8. The maximum absorbance of the complex lies at lambda = 560 nm, where the absorbance of the reagent is low. The molar absorptivity is 9000 l.mole(-1).cm(-1) at pH = 11.6. The value of the stability constant determined at 20 +/- 1 degrees C, pH = 11.6 and lambda = 560 nm is 4 x 10(5)M. The Beer-Lambert law is followed for iron concentration in the 0.2-5.0 mug/ml range. The spectrophotometric method was tested on synthetic solutions and thus applied for determination of traces of Fe(III) in several samples of alkaline hydroxides and carbonates without the neutralization of the solutions.  相似文献   

4.
The complexation mechanism and aggregate formation of bis[2-(5-bromo-2-pyridylazo)-5-diethylaminophenolate] iron(II) and iron(III) complexes at the heptane-water interface were studied spectrophotometrically by the high-speed stirring method and the centrifugal liquid membrane method. Furthermore, the reduction process of the Fe(III) complex with ascorbic acid at the interface was spectrophotometrically observed. The chemical compositions of the interfacial aggregate of complexes have been proved by the X-ray photoelectron spectroscopy. The aggregation of the complex at the interface was observed as a red-shifted, very strong and narrower absorption band with respect to the absorption band of the monomer complex. The aggregate of Fe(III) complex showed more shifted spectrum than that of Fe(II) complex, which proposed the larger aggregation number of Fe(III) aggregate (n = 8) than that of Fe(II) aggregate (n = 3). The obtained rate constants of interfacial aggregation were smaller than rate constants of interfacial monomer complexation, because the formation of aggregate required the assembly of the monomers.  相似文献   

5.
This article describes synthesis of the difference carboxylic acid derivatives of triphenylene and its complexation properties with Fe/Cr (III)-salophen. For this purpose, the carboxylic acid derivatives of 2,3,6,7,10,11-hexahydroxytriphenylene were synthesized and then reacted with four new Fe(III) and Cr(III) complexes involving tetradenta Schiff bases bis(salicylidene)-o-phenylenediamine-(salophenH2). The prepared compounds were characterized by means of elemental analysis carrying out infrared spectroscopy (IR), thermogravimetric analysis (TG), nuclear magnetic resonance (1H NMR), elemental analysis and magnetic susceptibility measurement. The complexes can also be characterized as low-spin distorted octahedral Fe(III) and Cr (III) bridged by carboxylic acids.  相似文献   

6.
A FIA indirect spectrophotometric determination of ascorbic acid was developed using its reducing action on Fe(III) in acidic medium and following the spectrophotometric determination of the reduced iron by using sodium 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4',4'-disulphonate (ferrozine) as chromogenic reagent in buffered medium (pH 5.5) and monitoring the absorbance signal at 562 nm. A three-line manifold with two reaction coils was used: in the first reaction coil, ascorbic acid reduces Fe(III) to Fe(II); and in the second one, the complexation reaction is developed. The linear range of the method was 0.5-10 mug ml(-1) of ascorbic acid, the detection limit being 0.028 mug ml(-1). The proposed method was sensitive, rapid (sampling rate of 90 samples h(-1)) and reproducible (RSD 0.19%, n=10). Satisfactory results were obtained in the determination of ascorbic acid in pharmaceutical preparations, fruit juices and urine testifying the applicability of the method to real samples.  相似文献   

7.
The solution properties of nickel complex with 4-(2'-benzo-thiazolylazo) salicylic acid (BTAS) have been studied by zero-order absorption spectrophotometry in 40% (v/v) ethanol at 20 degrees C and an ionic strength of 0.1 mol dm(-3) (KNO(3)). The equilibria that exist in solution were established and the basic characteristics of complexes formed were determined. A new direct spectrophotometric method for the determination of trace amounts of the nickel is proposed based on the formation of the Ni (BTAS) complex at pH 7.0. The absorption maximum, molar absorbtivity, and Sandell's sensitivity of 1:1 (M:L) complex are 525 nm, 0.6 x 10(4) l mol(-1) cm(-1) and 2.824 x 10(-9) microg cm(-2), respectively. The use of first-derivative spectrophotometry eliminates the interference of iron and enables the simultaneous determination of nickel and iron using BTAS. Quantitative determination of Ni(II) and Fe(III) is possible in the range (0.59-7.08) and (2.1-8.4) microg ml(-1), respectively with a relative standard deviation of 0.5%. The proposed method has been successfully applied to the simultaneous spectrophotometric determination of nickel and iron in steel alloys and aluminum alloys.  相似文献   

8.
The complexation between trimethoxyphenylflurone (TMPF) and Fe is highly sensitive at pH 11.80 in the presences of cetylpyridinium chloride (CPC) and thioglycolic acid (TGA), where TGA reduced TMPF into a reduced ligand (RTMPF) and Fe(III) into Fe(II). The complexations of RTMPF with CPC and Fe have been characterized by the break point approach and the spectral correction technique. The binuclear complex, Fe2 (RTMPF)10(CPC)20 was formed via coordination bond and ion‐pair attraction. The Fe‐TMPF‐CPC complexation is selective in the presence of ethylenediamine tetraacetic acid (EDTA) and Al(III) so it was applied to the spectrophotometric determination of total Fe(II+III) by the light‐absorption ratio variation approach (LARVA). Results indicated that ΔAr of the Fe‐RTMPF solution is linear at 568 and 641.5 nm at the range between 0 and 100 ng/mL Fe. The limit of detection (3σ) of Fe is only 2 ng/mL. This method was applied to analysis of several samples such as natural waters, cigarette ash, and urine with satisfactory results.  相似文献   

9.
A method has been developed for the spectrophotometric determination of siderophores using flow-injection analysis (FIA) based on the reaction of siderophores with the ternary complex Eriochrome Cyanine R-Fe(III)-cetyltrimethylammonium bromide. 2,3-Dihydroxybenzoic acid, 2,3-dihydroxynaphthalene, and tolypocine were used as the model iron-binding ligands. The calibration curve for one of the siderophores (tolypocine) is linear in the concentration range 2.6 x 10(-6)-1.5 x 10(-4)M. The determination limit (10sigma) for tolypocine was 2.6 x 10(-6)M. The applicability of the method was demonstrated on the determination of the complexation ability of siderophores produced by some entomopathogenic fungi. Samples can be analysed at a rate of 30 samples per hour.  相似文献   

10.
A method for spectrophotometric determination of four aromatic amines is described. The method is based on the reaction between the amine and the colorless Fe(III)-ferrozine complex. The amine reduces iron from Fe(III) to Fe(II) which forms a violet colored complex with ferrozine. The method is suitable for to the determination of 1,4-phenylenediamine, 2,4-diaminotoluene, 8-aminoquinoline and 2-amino-3-hydroxypyridine. The effect of different factors such as; pH, stability of the complex, temperature, ferrozine concentration, Fe(III) concentration and methanol concentration have been studied. The composition of the complex as well as the tolerance amount of other amines have been reported. Maximum absorbance is at 562 nm and Beer's law is obeyed over the ranges 0.17-1.6 ppm for 1,4-phenylenediamine, 0.45-3.7 ppm for 2,4-diaminotoluene, 0.51-3.4 ppm for 8-aminoquinoline and 0.53-4.4 ppm for 2-amino-3-hydroxypyridine. The obtained molar absorbtivities were 4.7x10(4), 2.0x10(4), 1.6x10(4), 1.5x10(3) l mol(-1) cm(-1) respectively.  相似文献   

11.
Nóbrega JA  Lopes GS 《Talanta》1996,43(6):971-976
A lot of modern analytical strategies for exploiting chemistries have been developed by using flow-injection analysis. However, even after 20 years of flow-injection evolution, there still are new quantitative procedures being established using old qualitative assays. The formation of Prussian Blue is a classical test to detect Fe(2+) using hexacyanoferrate(III) as a precipitating reagent. This reaction was evaluated for spectrophotometric determination of ascorbic acid employing Fe(3+) and hexacyanoferrate(III) as chromogenic reagents. An excess of the complexing anion avoids the formation of precipitate and forms a deep blue solution when Fe(3+) is reduced to Fe(2+) by ascorbic acid. The maximum absorbance of the colored complex occurs at 700 nm and the molar absorptivity is 3.0 x 10(4) 1 mol(-1) cm(-1). Under flow-injection conditions the Prussian Blue reaction was employed with an intermittent flow of an oxalate alkaline solution for removing the colored product adsorbed on tube and flow-cell walls. Reference solutions containing 5.0 x 10(-6)-1.0 x 10(-4) M of ascorbic acid were employed to obtain the analytical curve (r = 0.9999). For all solutions the relative standard deviation was lower than 1.0% (n=10). Results obtained for ascorbic acid determination in pharmaceutical products (Cewin, Redoxon and Cebion) are in good agreement with those obtained by using a flow-injection procedure involving the reaction between triiodide and ascorbic acid. The sampling frequency is 140 h(-1) and only 430 microl of reagents is consumed in each determination.  相似文献   

12.
Determination of pharmaceutical analytes has been subjected to many investigations, especially in transplantations in which accurate and precise detection of drugs is of importance. In this study, a simple and fast complexation reaction has been employed for simultaneous kinetic–spectrophotometric determination of two immunosuppressant drugs, mycophenolate mofetil and its active metabolite mycophenolic acid, which is based on the reaction between drugs and Fe(III) ions in the presence of sodium dodecyl sulfate as anionic surfactant by standard addition method. The effect of influential parameters including type of surfactant, concentration of Fe(III) ions and pH of the solution on the complexation reaction has been studied, and SDS was chosen as suitable surfactant, while reaction proceeds with 0.1 M Fe(III) at pH 4. Multivariate curve resolution-alternating least squares has been employed for analyzing the multiset data obtained from augmentation of resulting standard addition matrices. Values for limit of detection of method have been calculated as 4.88 and 1.62 µg mL?1 for mycophenolic acid and mycophenolate mofetil, respectively, and Beer’s law is obeyed over the concentration ranges 10–200 µg mL?1 for MPM and 50–250 µg mL?1 for MPA. The proposed method was successfully applied for determination of drugs in plasma serum samples. The accuracy and reliability of the method was further ascertained by recovery studies via standard addition procedure.  相似文献   

13.
Preconcentration, speciation and separation with solvent extraction of Fe(III) from samples of different origin, using methyl isobutyl ketone (MIBK) as a solvent and the sodium salt of 2-carboethoxy-1,3-indandione (CEIDNa) as a complexing agent for Fe(III), were studied. CEIDNa reacts with Fe(III) in the pH range 1.5–3.5 to produce a red colored complex of Fe(III)–CEIDNa (1:3 molar ratio) soluble in MIBK. The investigation includes a study of the characteristics that are essential for solvent extraction, spectrophotometric and flame atomic absorption spectrometric determination (AAS) of iron. A highly sensitive, selective and rapid spectrometric method is described for the trace analysis of iron(III) by CEIDNa. The complex formed obeys Beer's law from 0.06 to 1.8 mg l−1 with an optimum range. A single step extraction was efficiently used with a distribution ratio (D)=103.6. The extracted red colored (1:3) Fe–CEIDNa was measured spectrophotometrically at 500 nm with a molar absorptivity of 1.2×104 l mol−1 cm−1. In addition, the organic phase was directly aspirated to the flame for AAS determination and the signals related to Fe(III) concentration were recorded at 243.3 nm. The complexation of iron(III) with CEIDNa allows the separation of the analyte from alkali, alkaline earth and other elements, which are not complexed. The proposed preconcentration procedure was applied successfully to the determination of trace Fe(III) in soil, milk and natural water samples.  相似文献   

14.
Nagaosa Y 《Talanta》1979,26(11):987-990
A simple and sensitive method has been developed for the polarographic determination of indium(III) after solvent extraction into acetonitrile, salted-out from aqueous solution with sodium bromide. The extracted indium(III)-bromide complex gives a well-defined d.c. wave with E(1 2 ) = -0.69 V vs. SCE. The wave-height is directly proportional to the concentration of indium(III) from 1.6 x 10(-6) to 3.0 x 10(-4)M with respect to the original aqueous solution. In the a.c. polarographic method, a linear calibration curve is obtained for indium(III) over the concentration range from 1.6 x 10(-6) to 1.5 x 10(-5)M, and interference from most foreign ions can be eliminated. In particular, 10.0 mg of Fe(III) and 2.5 mg of Tl(III) are tolerated when 1.0 g of ascorbic acid is added. The lower limit of determination is 8 x 10(-8)M indium(III) by the square-wave polarographic method.  相似文献   

15.
pK(a) values for the hydroxamic acid, alpha-NH(3)(+), and epsilon-NH(3)(+) groups of L-lysinehydroxamic acid (LyHA, H(3)L(2+)) were found to be 6.87, 8.89, and 10.76, respectively, in aqueous solution (I = 0.1 M, NaClO(4)) at 25 degrees C. O,O coordination to Fe(III) by LyHA is supported by H(+) stoichiometry, UV-vis spectral shifts, and a shift in nu(CO) from 1648 to 1592 cm(-1) upon formation of mono(L-lysinehydroxamato)tetra(aquo)iron(III) (Fe(H(2)L)(H(2)O)(4)(4+)). The stepwise formation of tris(L-lysinehydroxamato)iron(III) from Fe(H(2)O)(6)(3+) and H(3)L(2+) was characterized by spectrophotometric titration, and the values for log beta(1), log beta(2), and log beta(3) are 6.80(9), 12.4(2), and 16.1(2), respectively, at 25 degrees C and I = 2.0 M (NaClO(4)). Stopped-flow spectrophotometry was used to study the proton-driven stepwise ligand dissociation kinetics of tris(L-lysinehydroxamato)iron(III) at 25 degrees C and I = 2.0 M (HClO(4)/NaClO(4)). Defining k(n) and k(-n) as the stepwise ligand dissociation and association rate constants and n as the number of bound LyHA ligands, k(3), k(-3), k(2), k(-2), k(1), and k(-1) are 3.0 x 10(4), 2.4 x 10(1), 3.9 x 10(2), 1.9 x 10(1), 1.4 x 10(-1), and 1.2 x 10(-1) M(-1) s(-1), respectively. These rate and equilibrium constants are compared with corresponding constants for Fe(III) complexes of acetohydroxamic acid (AHA) and N-methylacetohydroxamic acid (NMAHA) in the form of a linear free energy relationship. The role of electrostatics in these complexation reactions to form the highly charged Fe(LyHA)(3)(6+) species is discussed, and an interchange mechanism mediated by charge repulsion is presented. The reduction potential for tris(L-lysinehydroxamato)iron(III) is -214 mV (vs. NHE), and a comparison to other hydroxamic acid complexes of Fe(III) is made through a correlation between E(1/2) and pFe.  相似文献   

16.
Compounds having general formula: [M(FO)(Cl)(x)(H(2)O)(y)].zH(2)O, where (M=Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), FO=folate anion, x=2 or 4, y=2 or 4 and z=0, 1, 2, 3, 5 or 15) were prepared. The obtained compounds were characterized by elemental analysis, infrared as well as electronic spectra, thermogravimetric analysis and the conductivity measurements. The results suggested that all folate complexes were formed by 2:1 molar ratio (metal:folic acid) as a bidentate through both of the two carboxylic groups. The molar conductance measurements proved that the folate complexes are electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* were estimated from the DTG curves. The antibacterial evaluation of the folic acid and their complexes was also done against some Gram positive/negative bacteria as well as fungi.  相似文献   

17.
Hanna WG 《Talanta》1999,50(4):809-818
The complexation of para-Cl-phenylazo-R-acid azo dye with Pd(II) has been studied spectrophotometrically. Protonation constant (pK(a)) of the ligand has been calculated and the stability conditional constants of para-Cl-phenylazo-R-acid ligand with palladium ion has been determined at a constant temperature (25.0 degrees C), where the molar ratio of this complex is 1:1 (metal:ligand) with logbeta(1)=3.75, and 1:2 with logbeta(2)=8.55. Solid complex of para-Cl-phenylazo-R-acid has been prepared and characterized on the basis of elemental analysis and FTIR spectral data. A procedure for the spectrophotometric determination of Pd(II) using para-Cl-phenylazo-R-acid as a new azo chromophore is proposed where it is rapid, sensitive and highly specific. Beer's law was obeyed in the range 0.50-10.00 ppm at pH 5.0-6.0 to form a violet-red complex (epsilon=7.7 x 10(4) l(-1) mol(-1) cm(-1) at lambda(max)=560 nm). Metal ions such as Cu(II), Cr(III), La(III), Yb(III), Y(III), and Rh(III) interfere with the complex. Ammonium salt of trimellitic acid is used to precipitate some of the interfering ions and a scheme for separation of Pd(II) from a synthetic mixture similar in composition to platinum ore or deposit was made.  相似文献   

18.
P B Issopoulos 《The Analyst》1989,114(5):627-630
The complexation of iron(III) with norfloxacin in acidic solution at 25 degrees C, at an ionic strength of about 0.3 M and a pH of 3.0 has been studied. The water-soluble complex formed, which exhibits an absorption maximum at 377 nm, was used for the spectrophotometric determination of trace amounts of iron(III). The molar absorptivity was 9.05 x 10(3) I mol-1 cm-1 and the Sandell sensitivity 6.2 ng cm-2 of iron(III) per 0.001 A. The formation constant (Kf) was determined spectrophotometrically and was found to be 4.0 x 10(8) at 25 degrees C. The calibration graph was rectilinear over the range 0.25-12.0 p.p.m. of iron(III) and the regression line equation was A = 0.163c - 0.00042 with a correlation coefficient of 0.9998 (n = 9). Common cations, except cerium (IV), did not interfere with the determination. The results obtained for the determination of iron(III) using the described procedure and the thiocyanate method were compared statistically by means of the Student t-test and no significant difference was found.  相似文献   

19.
On-column complexation of Fe2+ and Fe3+ with 2,6-pyridinedicarboxylic acid (2,6-PDCA) formed anionic complexes, which were then separated by capillary zone electrophoresis with direct UV detection at 214 nm. To achieve reasonable separation selectivity and on-column complexation, the conditions such as pH, the concentration of 2,6-PCDA and the EOF modifiers in the electrolyte were examined. The electrolyte contained 5.0 mM 2,6-PDCA, 0.25 mM tetradecyltrimethlammonium bromide (TTAB) and 5% (v/v) acetonitrile at pH 4.0 was optimised for on-column complexation and the separation of Fe[PCDA]2(2-) and Fe[PCDA]2(-). To enhance the detection sensitivity, large-volume sample stacking (LVSS) was used for the on-line preconcentration of Fe[PCDA]2(2-) and Fe[PCDA]2(-). Under the optimised conditions, satisfactory working ranges (0.5-50 microM), lower detection limits (less than 0.1 microM) and good repeatability of the peak areas (R.S.D.: 5.2-7.8%, n = 5) was achieved using LVSS (300 s). With LVSS, the detection sensitivity was enhanced more than 50-fold compared to conventional hydrodynamic injection. The proposed method was used successfully for the determination of Fe2+ and Fe3+ in water samples.  相似文献   

20.
A new catalytic spectrophotometric method is described for the determination of trace amounts of Al(III). The methods based on catalytic action of Al(III) on the oxidation of indigo carmine (IC) by ammonium persulfate in hexamethylene tetramine-hydrochloric acid ((CH2)6N4-HCl) buffer medium (pH 5.4) and in the presence of surfactant-TritonX-100. The effects of some factors on the reaction speed were investigated. Aluminium concentration is linear for 0-1.2x10(-7) g/ml in this method. The detection limit of the proposed method is 1.96x10(-8) g/ml. Most of the foreign ions except for Cu(II), Fe(III) do not interfere with the determination, and the interference of Cu(II) and Fe(III) in this method can be removed by extraction with sodium diethyldithiocarbamate-carbon tetrachloride (DDTC-CCl4). This system is a quasi-zero-order reaction for Al(III), but it is a quasi-first-order reaction for IC. The apparent rate constant is 2.62x10(-5) s-1 and the apparent activation energy is 6.60 kJ/mol in the system. The proposed method was applied to the determination of trace aluminium(III) in real samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号