首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple method for fabricating superhydrophobic silicon surfaces. The method consists of irradiating silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules. The laser irradiation creates a surface morphology that exhibits structure on the micro- and nanoscale. By varying the laser fluence, we can tune the surface morphology and the wetting properties. We measured the static and dynamic contact angles for water and hexadecane on these surfaces. For water, the microstructured silicon surfaces yield contact angles higher than 160 degrees and negligible hysteresis. For hexadecane, the microstructuring leads to a transition from nonwetting to wetting.  相似文献   

2.
Hydrogen-terminated silicon surface is of technological importance to semiconductor processes such as pre-gate[1]. Re-contamination and re-oxidation on silicon surface become more stringent issues in order to meet the requirements in the process for producing reduced size IC chips. The modification of silicon surfaces by various strategies has attracted more attention in the past few years[2-4]. The frequently used techniques to attach functional groups to silicon surfaces are via chemical[2], photochemical[3] and electrochemical reactions[4]. Various ways to attach monlayers to silicon surfaces has been reported, including alkylation of silicon with alkenes, alkyenes, aldehydes, alcohols and Grigard reagents under photoactivated or catalytic reactions. Particularly, porous silicon prepared by chemical or electrochemical treatments has been extensively studied. Preparation of passivated layers on porous silicon surfaces has disadvantages that the silicon surfaces are damaged by reactive agents during the reaction or become porous for attachment of molecules. Recently, self-assembled monolayer of alcohols on porous silicon was reported at modest heating without the aid of catalyst or photoexcitation or potential[5]. In the paper, we report a novel method to attach highly polarized fluoroalkylsilane on atomically flat Si(111) surface at room temperature and to form a self-assembled monolayer to prevent the silicon surface from re-contamination and re-oxidation.  相似文献   

3.
微米/纳米结构对氟硅烷修饰氧化铝表面疏水性能的影响   总被引:2,自引:1,他引:2  
以多孔氧化铝膜为基板,用NaOH溶液进行化学腐蚀,控制适当的条件,得到氧化铝微米/纳米表面结构.用氟硅烷分别修饰光滑氧化铝膜、多孔氧化铝膜及其微米/纳米结构表面,进行接触角测试、XPS成分分析和SEM结构表征.结果表明,氟硅烷修饰的微米/纳米结构表面对水的接触角(149°±2°)比光滑表面(101°±1°)和纳米孔洞结构表面(141°±2°)都高.  相似文献   

4.
Chemical etching of silicon: Smooth, rough, and glowing surfaces   总被引:1,自引:0,他引:1  
Scanning Force Microscope images of silicon surface morphology are presented for samples exposed to various oxidizing environments followed by oxide removal. These are contrasted with samples exposed to HNO3/HF solutions. The former samples consistently produced surface roughness on the order of a few nanometers, while the latter solution exhibited surface roughness of several hundred to over a thousand nanometers. This rough surface is photoluminescent and is known as porous silicon. Careful observation of the onset of the reaction (which is proceeded by a concentration dependent induction period) suggests that the reaction mechanism is autocatalytic; some etchant product species catalyzes the further attack of the surface. Surface features of co-existing fluorescing and non-fluorescing regions emphasize the heavy etching present in the porous silicon region. Local control of the porous silicon formation by a photoinduced etching process is reported for the first time suggesting the possibility of a non-resist lithographic procedure.  相似文献   

5.
自从Canham首次报道了室温下多孔硅的光致发光现象以来[1],多孔硅已成为半导体光电化学及材料领域内最为热门的研究课题[2].  相似文献   

6.
Superhydrophobic bionic surfaces with hierarchical micro/nano structures were synthesized by decorating single-walled or multiwalled carbon nanotubes (CNTs) on monolayer polystyrene colloidal crystals using a wet chemical self-assembly technique and subsequent surface treatment with a low surface-energy material of fluoroalkylsilane. The bionic surfaces are based on the regularly ordered colloidal crystals, and thus the surfaces have a uniform superhydrophobic property on the whole surface. Moreover, the wettability of the bionic surface can be well controlled by changing the distribution density of CNTs or the size of polystyrene microspheres. The morphologies of the synthesized bionic surfaces bear much resemblance to natural lotus leaves, and the wettability exhibited remarkable superhydrophobicity with a water contact angle of about 165 degrees and a sliding angle of 5 degrees.  相似文献   

7.
A facial chemical etching method was developed for fabricating superhydrophobic aluminum surfaces. The resultant surfaces were characterized by scanning electron microscopy, water contact angle (WCA) measurement, and optical methods. The surfaces of the modified aluminum substrates exhibit superhydrophobicity, with a WCA of 154.8° ± 1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block‐like convexes and hollows. The superhydrophobicity of aluminum substrates occurs only in some structures in which the plateaus and caves are appropriately ordered. The resulted surfaces have good self‐cleaning properties. The results demonstrate that it is possible to construct superhydrophobic surface on hydrophilic substrates by tailoring the surface structure to providing more spaces to trap air. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Surface-enhanced Raman spectroscopy (SERS) substrates have been prepared by depositing Au or Ag on porous GaN (PGaN). The PGaN used as the template for the metal deposition in these studies was generated by a Pt-assisted electroless etching technique. PGaN was chosen as a potential SERS template due to its nanostructured surface and high surface area, two characteristics that are important for SERS substrates. Metal films were deposited either by solution-based electroless deposition or by thermal vacuum evaporation. SERS spectra were recorded at lambda = 752.5 nm for Au films and at lambda = 514.5 nm for Ag films deposited on PGaN. The SERS signal strength across the metal coated PGaN substrates was uniform and was not plagued by "hot" or "cold" spots on the surface, a common problem with other SERS surfaces. The Ag film deposited by electroless deposition had the highest overall SERS response, with an enhancement factor (EF) relative to normal Raman spectroscopy of 10(8). A portion of the increase in EF relative to typical SERS-active substrates can be assigned to the large surface area characteristic of the PGaN-Ag structures, but some of the enhancement is intrinsic and is likely related to the specific morphology of the metal-nanopore composite structure.  相似文献   

9.
金属辅助化学腐蚀法可以在无外加电路的条件下,在40%HF/30%H2O2/乙醇的混合溶液中完成多孔硅的制备,该方法简单快速。本文研究了金属辅助法腐蚀液体系各组分(HF、H2O2、乙醇)含量对多孔硅表面的SiHx成分和多孔层结构的影响,根据Si-H和Si-O的红外吸收峰强度的变化曲线优化了腐蚀液体系中各组分含量。在腐蚀液各组分体积比为V40%HF∶V30%H2O2∶V乙醇=2∶2∶1和腐蚀时间为4 min的条件下制备了形貌均匀、化学活性(SiHx成分)和多孔结构稳定性较好的多孔硅,并对金属辅助法与阳极蚀刻法制得的两种多孔硅进行比较,结果显示金属辅助法制备的多孔硅的化学活性和稳定性在后续的生物技术应用中具有明显的优越性。  相似文献   

10.
Nanostructured superhydrophobic silicon surfaces with tunable reflectance are fabricated via a simple maskless deep reactive-ion etching process. By controlling the scale of the high-aspect-ratio nanostructures on a wafer-scale surface, surface reflectance is maximized or minimized over the UV-vis-IR range while maintaining superhydrophobic properties.  相似文献   

11.
An effective fabrication method combining deep reactive ion etching and galvanic etching for silicon micro-nano hierarchical structures is presented in this paper. The method can partially control the morphology of the nanostructures and enables us to investigate the effects of geometry changes on the properties of the surfaces. The forming mechanism of silicon nanostructures based on silver nanoparticle galvanic etching was illustrated and the effects of process parameters on the surface morphology were thoroughly discussed. It is found that process parameters have more impact on the height of silicon nanostructure than its diameter. Contact angle measurement and tilting/dropping test results show that as-prepared silicon surfaces with hierarchical structures were superhydrophobic. What's more, two-scale model composed of micropillar arrays and nanopillar arrays was proposed to study the wettability of the surface with hierarchical structures. Wettability analysis results indicate that the superhydrophobic surface may demonstrate a hybrid state at which water sits on nanoscale pillars and immerses into microscale grooves partially.  相似文献   

12.
We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.  相似文献   

13.
A highly oriented ZnO nanorod array film was fabricated on glass substrate by combinations of Sol–Gel and hydrothermal. The film exhibits perfect superhydrophobicity with a contact angle of 155° and a glide angle of 4° after being surface modified by fluoroalkylsilane, which is similar with wings’ property and structures of large yellow spots mosquitoes. Interestingly, the ZnO nanorods film were converted from superhydrophobicity into superhydrophilicity under ultraviolet light for 2 h due to the decomposition of fluoroalkyl chain of fluoroalkylsilane and the photosensitivity of ZnO surface. The transition mechanisms of wettability are discussed on the basis of correlated theories.  相似文献   

14.
The paper reports on the preparation of superhydrophobic amorphous silicon oxide nanowires (a-SiONWs) on silicon substrates with a contact angle greater than 150 degrees by means of surface roughness and self-assembly. Nanowires with an average mean diameter in the range 20-150 nm and 15-20 microm in length were obtained by the so-called solid-liquid-solid (SLS) technique. The porous nature and the high roughness of the resulting surfaces were confirmed by AFM imaging. The superhydrophobicity resulted from the combined effects of surface roughness and chemical modification with fluorodecyl trichlorosilane.  相似文献   

15.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   

16.
A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.  相似文献   

17.
Zn片经水热反应和氟硅烷修饰构建超疏水ZnO表面   总被引:3,自引:0,他引:3  
以乙二胺为溶剂, Zn片在120、140 及160 ℃经水热反应生长出具有蛋糕形、荷叶乳突状、棒状和仙人球状等微结构的ZnO表面. 扫描电镜研究表明, 反应时间越长越有利于形成完整的微纳米结构, 反应温度较高生成的微纳米结构更规整. 140 ℃反应4 h和160 ℃反应5 h的ZnO表面经过氟硅烷修饰后表现出良好的超疏水性, 与水滴的接触角分别达到154.6°和157.3°, 滚动角分别为5°和3°. 该方法因其操作简便、成本低廉, 在锌表面制备特殊微结构和构建超疏水表面具有潜在的应用.  相似文献   

18.
Using the polystyrene (PS) colloidal monolayers as templates, ordered indium oxide pore array films with different morphologies were prepared by sol-dipping method. These porous films took on hydrophilicity, however, after chemical modification, such pore array films displayed both superhydrophobicity and lipophobicity due to rough surface and low surface free energy materials on their surfaces. Interestingly, with increase of the pore size in the films, the superhydrophobicity could be controlled and was gradually enhanced due to the corresponding increase of roughness caused by nanogaps produced by the thermal stress in the annealing process with increase of film thickness.  相似文献   

19.
The mechanism of the formation of Si-C bonded monolayers on silicon by reaction of 1-alkenes with hydrogen-terminated porous silicon surfaces has been studied by both experimental and computational means. We propose that monolayer formation occurs via the same radical chain process as at single-crystal surfaces: a silyl radical attacks the 1-alkene to form both the Si-C bond and a radical center on the beta-carbon atom. This carbon radical may then abstract a hydrogen atom from a neighboring Si-H bond to propagate the chain. Highly deuterated porous silicon and FTIR spectroscopy were used to provide evidence for this mechanism by identifying the IR bands associated with the C-D bond formed in the proposed propagation step. Deuterated porous silicon surfaces formed by galvanostatic etching in 48% DF/D2O:EtOD (1:1) electrolytes showed a 30% greater density of Si-D sites on the surface than Si-H sites on hydrogen-terminated porous silicon surfaces prepared in the equivalent H-electrolyte. The thermal reaction of undec-1-ene and the Lewis acid catalyzed reaction of styrene on a deuterated surface both resulted in alkylated surfaces with the same C-C and C-H vibrational features as formed in the corresponding reactions at a hydrogen-terminated surface. However, a broad band around 2100 cm(-1) was observed upon alkylating the deuterated surfaces. Ab initio and density functional theory calculations on small molecule models showed that the integrated absorbance of this band was comparable to the intensity expected for the C-D stretches predicted by the chain mechanism. The calculations also indicate that there is substantial interaction between the hydrogen atoms on the beta-carbons and the hydrogen atoms on the Si(111)-H surface. These broad 2100 cm(-1) features are therefore assigned to C-D bands arising from the involvement of surface D atoms in the hydrosilylation reactions, while the line broadening can be explained partly by interaction with neighboring surface atoms/groups.  相似文献   

20.
报道了在含氟的酸性水溶液中, 对电沉积制备的WO3薄膜电极进行电化学刻蚀, 并采用光电化学、扫描电子显微镜(SEM)、X射线衍射(XRD)、光电子能谱(XPS)、紫外-可见漫反射光谱、光致发光(PL)等方法对电极进行了表征. 结果表明, 刻蚀使电极比表面积增大, 质量减少, 重要的是可使电极表面状态发生变化. 在相同催化剂质量和比表面积的条件下, 这种变化显著提高了WO3薄膜电极在可见光和紫外-可见光照下的光电转换性能. 机理研究表明, 电极光电化学性能提高可归因于刻蚀使电极表面发生氟化, 光生载流子表面复合中心数目减少, 平带电位负移. 刻蚀对电极的吸光性质和晶体结构等未检测出明显变化. 氟化电极在酸性中具有良好的光电化学稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号