首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laminar-turbulent transition is experimentally studied in boundary-layer flows on cones with a rectangular axisymmetric step in the base part of the cone and without the step. The experiments are performed in an A-1 two-step piston-driven gas-dynamic facility with adiabatic compression of the working gas with Mach numbers at the nozzle exit M = 12–14 and pressures in the settling chamber P0 = 60–600 MPa. These values of parameters allow obtaining Reynolds numbers per meter near the cone surface equal to Re 1e = (53–200) · 106 m −1. The transition occurs at Reynolds numbers Re tr = (2.3–5.7) · 106. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 76–83, May–June, 2007.  相似文献   

2.
Results of an experimental and numerical study of the effect of conical separation regions artificially generated ahead of the target owing to impingement of a supersonic two-phase jet on the character of motion of particles smaller than 1 µm in diameter and on the process of cold gas-dynamic spraying as a whole are presented. Calculations predict a noticeable effect of the conical separation region artificially generated ahead of the target on the character of particle motion; in particular, the maximum velocity of the particle impact onto the target is found to be greater than that during spraying without the spike. Thus, the possibility of formation of a coating from particles smaller than 1 µm in diameter is demonstrated, and recommendations for implementation of the process in practice are given.  相似文献   

3.
Based on experimental data and numerical modeling, it is shown that a lamina of melted metal of thickness of order0.01 d, in which the temperature is close to the melting point of the particle material, can be formed upon high-speed impact (v 0≈500–1200 m/sec) of a fine metal particle (d=1–50 μm) on a rigid undeformable barrier near the contact surface. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 204–209, January–February, 2000.  相似文献   

4.
A gas-dynamic flow in an axisymmetric convective jet is studied experimentally. It is demonstrated that the jet flow with Grashof numbers Gr = (0.4–2.0) · 106 is self-similar. Acoustic oscillations directed perpendicular to the axis of symmetry transform the profiles of the gas-flow parameters; two temperature maximums located outside the axis can appear. The results obtained indicate that flow instability is generated in high-gradient regions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 27–33, September–October, 2006.  相似文献   

5.
The characteristics of travelling perturbations of density in a hypersonic shock layer on a flat plate for the Mach number M=21 and unit Reynolds numberRe 1=6·105 m−1 were experimentally studied by the method of electron-beam fluorescence. The perturbations were generated by interaction of the shock layer behind an oblique gas-dynamic whistle and the leading edge of the plate. The cases of unsteady and quasi-steady interaction were considered. In both cases, vortex disturbances of finite amplitude were generated. The measurements were performed at the fundamental frequency F=0.6·10−4 and at the harmonic; the streamwise phase velocities, the growth rates of the disturbances, and the angles of wave propagation were obtained. The measurement results are compared with some experimental data for subsonic flows, some particular results of the linear stability theory for compressible flows, and the results obtained on the basis of a simple model of the nonlinear stage of disturbance evolution in a hypersonic boundary layer. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 41–47, November–December, 1999.  相似文献   

6.
The passage of solid spheres through a liquid–liquid interface was experimentally investigated using a high-speed video and PIV (particle image velocimetry) system. Experiments were conducted in a square Plexiglas column of 0.1 m. The Newtonian Emkarox (HV45 50 and 65% wt) aqueous solutions were employed for the dense phase, while different silicone oils of different viscosity ranging from 10 to 100 mPa s were used as light phase. Experimental results quantitatively reveal the effect of the sphere’s size, interfacial tension and viscosity of both phases on the retaining time and the height of the liquid entrained behind the sphere. These data were combined with our previous results concerning the passage of a rising bubble through a liquid–liquid interface in order to propose a general relationship for the interface breakthrough for the wide range of Mo 1/Mo 2 ∈ [2 × 10−5–5 × 104] and Re 1/Re 2 ∈ [2 × 10−3–5 × 102].  相似文献   

7.
The ultra-low Reynolds number airfoil wake   总被引:1,自引:0,他引:1  
Lift force and the near wake of an NACA 0012 airfoil were measured over the angle (α) of attack of 0°–90° and the chord Reynolds number (Re c ), 5.3 × 103–5.1 × 104, with a view to understand thoroughly the near wake of the airfoil at low- to ultra-low Re c . While the lift force is measured using a load cell, the detailed flow structure is captured using laser-Doppler anemometry, particle image velocimetry, and laser-induced fluorescence flow visualization. It has been found that the stall of an airfoil, characterized by a drop in the lift force, occurs at Re c  ≥ 1.05 × 104 but is absent at Re c  = 5.3 × 103. The observation is connected to the presence of the separation bubble at high Re c but absence of the bubble at ultra-low Re c , as evidenced in our wake measurements. The near-wake characteristics are examined and discussed in detail, including the vortex formation length, wake width, spanwise vorticity, wake bubble size, wavelength of K–H vortices, Strouhal numbers, and their dependence on α and Re c .  相似文献   

8.
This paper presents a rigorous study, for Fermi–Pasta–Ulam (FPU) chains with large particle numbers, of the formation of a packet of modes with geometrically decaying harmonic energies from an initially excited single low-frequency mode and the metastability of this packet over longer time scales. The analysis uses modulated Fourier expansions in time of solutions to the FPU system, and exploits the existence of almost-invariant energies in the modulation system. The results and techniques apply to the FPU α- and β-models as well as to higher-order nonlinearities. They are valid in the regime of scaling between particle number and total energy in which the FPU system can be viewed as a perturbation to a linear system, considered over time scales that go far beyond standard perturbation theory. Weak non-resonance estimates for the almost-resonant frequencies determine the time scales that can be covered by this analysis.  相似文献   

9.
The efficiency of utilization of CO 2 laser energy for vaporization of Al 2 O 3 ceramics is evaluated using a mathematical model for the interaction of laser radiation with materials. It is shown that the calculated efficiency of radiation-energy utilization is not higher than 15% at a radiation power density of 105 W/cm 2 on the target. On the experimental facility designed for the synthesis of nanopowders, a vaporization rate of 1 g/h was achieved for Al 2 O 3, which corresponds to a 3% efficiency of radiation-energy utilization. The dependence of the characteristic particle size of a zirconium oxide nanopowder on helium pressure in the range of 0.01–1.00 atm was studied. Results of experiments on vaporization of multicomponent materials (LaNiO 3 and the Tsarev meteorite) are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 172–184, March–April, 2007.  相似文献   

10.
 Certain aspects of wave propagation and the dynamic reaction of a granular material when subjected to a long-duration impulse load are studied. In the majority of studies published on this subject the unsteady pressure behavior at the end-wall covered by a layer of granular material was observed and documented. However, up to now little attention was given to explaining the physical mechanism of this process. Experimental results, obtained in the course of this study, regarding the pressure fields inside granular layers of different materials, clearly show that the compaction effect strongly depends on the characteristics of the medium. This phenomenon manifests itself by changing the gas-particle interaction in the course of the gas filtration, and by variation in the contribution of the different forces and effective stress, σ, to the energy exchange between the gas, the particles and the shock-tube wall. The material permeability,  f, the relative density, ν, and the particle response time, τ p , are the most important parameters affecting the stress formation at the end-wall covered by the granular layer. In addition to the effect of the material parameters, the effective stress, σ, was found to strongly depend on the granular layer height, h. Based on detailed pressure measurements a qualitative analysis regarding the role of the particle rearrangement in the formation of the unsteady peak at the end-wall was performed. The phenomenology of the particle–particle interaction includes rotation and consolidation of the granules and movement or sliding of particle planes within the layer over each other. Most of these processes are frictional in their nature. They are related to the energy losses and affect the profile and magnitude of the compressive stress as measured at the shock-tube end-wall covered by the granular layer. Received: 10 June 1996/Accepted: 15 October 1996  相似文献   

11.
In the frame of industrial risk and propulsive application, the detonability study of JP10–air mixtures was performed. The simulation and measurements of detonation parameters were performed for THDCPD-exo/air mixtures at various initial pressure (1 bar < P 0 < 3 bar) and equivalence ratio (0.8 < Φ < 1.6) in a heated tube (T 0 ~ 375 K). Numerical simulations of the detonation were performed with the STANJAN code and a detailed kinetic scheme of the combustion of THDCPD. The experimental study deals with the measurements of detonation velocity and cell size λ. The measured velocity is in a good agreement with the calculated theoretical values. The cell size measurements show a minimum value for Φ ~ 1.2 at every level of initial pressure studied and the calculated induction length L i corresponds to cell size value with a coefficient k = λ/L i = 24 at P 0 = 1 bar. Based on the comparison between the results obtained during this study and those available in the literature on the critical initiation energy E c, critical tube diameter d c and deflagration to detonation transition length L DDT, we can conclude that the detonability of THDCPD–air mixtures corresponds to that of hydrocarbon–air mixtures.
This paper is based on the work presented at the 33rd International Pyrotechnics Seminar, IPS 2006, Fort Collins, July 16–21, 2006.  相似文献   

12.
When a nonhomogeneous solid is melting from below, convection may be induced in a thermally–unstable melt layer. In this study, the onset of buoyancy-driven convection during time-dependent melting is investigated by using similarly transformed disturbance equations. The critical Darcy–Rayleigh numbers based on the melt-layer thickness, Ra H,c, are found numerically for various conditions. For small superheats, the present predictions show that Ra H,c is located between 27.1 and 4π 2 and it approaches the well-known results of the original Horton–Rogers–Lapwood problem. However, for high superheats, it is dependent on the phase change rate λ and the relation of Ra H,c λ = 25.89 is shown.  相似文献   

13.
Particle tracer response across shocks measured by PIV   总被引:1,自引:0,他引:1  
The experimental approach used for the evaluation of the particle response time across a stationary shock wave is assessed by means of PIV measurements. The study focuses on the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law. A numerical simulation of the particle response experiment returns the parameters governing the measurement: namely the normalized spatial and temporal resolution, shock strength, and digital resolution. Representing the velocity decay in logarithmic coordinates it is shown that measurements performed with laser pulse separation time up to τ p and interrogation window up to ξ p still yield unbiased results for the particle response. A set of experiments on the particle response across a planar oblique shock wave was conducted to verify the results from the numerical assessment. Liquid droplets of DEHS and solid tracer particles of silicon and titanium dioxide with different primary crystal size are compared. The resulting temporal response ranges from 2 to 3 μs, corresponding to values commonly reported in literature, to almost 0.3 μs when particles are properly dehydrated and a filter is applied before injection into the wind tunnel. It is the first experimental evidence of particle tracers with a measured response time lower than 0.4 μs. The same procedure is applied to attempt the measurement of individual particle tracers by particle tracking velocimetry to estimate the spread in the distribution of tracer time response. The latter analysis is limited by the particle image tracking precision error, which biases the results introducing a wider broadening of the particle velocity distribution.  相似文献   

14.
Experiments have been carried out to determine the dependence of the detonation velocity in porous media, on mixture sensitivity and pore size. A detonation is established at the top end of a vertical tube and allowed to propagate to the bottom section housing the porous bed, comprised of alumina spheres of equal diameter (1–32 mm). Several of the common detonable fuels were tested at atmospheric initial pressure. Results indicate the existence of a continuous range of velocities with change in Φ, spanning the lean and the rich propagation limits. For all fuels in a given porous bed, the velocity decreases from a maximum value at the most sensitive mixture near Φ≈1 (minimum induction length), toV/V CJ≈0.3 at the limits. A decrease in pore size brings about a reduction inV/V CJ and a narrowing of the detonability range for each fuel. For porous media comprised of spherical particles, it was possible to correlate the velocity data corresponding to a variety of different mixtures and for a broad range of particle sizes, using the following empirical expression:V/V CJ=[1–0.35 log(d c /d p)]±0.1. The critical tube diameterd c is used as a measure of mixture sensitivity andd p denotes the pore diameter. An examination of the phenomenon at the composition limits, suggests that wave failure is controlled by a turbulent quenching mechanism.  相似文献   

15.
The design of a manganin gauge for pressure measurement up to1 GPa is described. This gauge, intended for operation in the most intense sites of a pulsed source of the working gas in a gas-dynamic device, is described. The electrical circuit for measurement and recording of the pressure is given. The oscillogram of one of the experiments demonstrates the operation of the gauge on anA-1 adiabatic device in the conditions of a real cycle of preparation and removal of the working gas. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 186–189, September–October, 1998.  相似文献   

16.
We investigate the relation between the structure and the viscoelastic behavior of a model polymer nanocomposite system based on a mixture of titanium dioxide (TiO2) nanoparticles and polypropylene. Above a critical volume fraction, Φ c, the elasticity of the hybrids dramatically increases, and the frequency dependence of the elastic and viscous moduli reflects the superposition of the independent responses of the suspending polymer melt and of an elastic particle network. In addition, the elasticity of the hybrids shows critical behavior around Φ c. We interpret these observations by hypothesizing the formation of a transient network, which forms due to crowding of particle clusters. Consistent with this interpretation, we find a long-time, Φ-dependent, structural relaxation, which emphasizes the transient character of the structure formed by the particle clusters. For times below this characteristic relaxation time, the elasticity of the network is Φ-independent and reminiscent of glassy behavior, with the elastic modulus, G, scaling with frequency, ω, as Gω 0.3. We expect that our analysis will be useful for understanding the behavior of other complex fluids where the elasticity of the components could be superimposed.  相似文献   

17.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

18.
The Cauchy problem for the 1D real-valued viscous Burgers equation u t +uu x  = u xx is globally well posed (Hopf in Commun Pure Appl Math 3:201–230, 1950). For complex-valued solutions finite time blow-up is possible from smooth compactly supported initial data, see Poláčik and Šverák (J Reine Angew Math 616:205–217, 2008). It is also proved in Poláčik and Šverák (J Reine Angew Math 616:205–217, 2008) that the singularities for the complex-valued solutions are isolated if they are not present in the initial data. In this paper we study the singularities in more detail. In particular, we classify the possible blow-up rates and blow-up profiles. It turns out that all singularities are of type II and that the blow-up profiles are regular steady state solutions of the equation.  相似文献   

19.
This work aimed at improving fine-scale measurements using cold-wire anemometry. The dissipation ɛ θ of the temperature variance was measured on the axis of a heated turbulent round jet. The measurements were performed with a constant current anemometer (CCA) operating fine Pt–10%Rh wires at very low overheat. The CCA developed for this purpose allowed the use of the current injection method in order to estimate the time constant of the wire. In the first part of the paper, it is shown that the time constants obtained for two wire diameters −d=1.2 and d=0.58 μm – compare well with those measured at the same time using two other methods (laser excitation and pulsed wire). Moreover, for these two wires, the estimated time constants were in good agreement with those obtained from a semi-empirical relation. In the second part of the paper, a compensation procedure – post-processing filtering – was developed in order to improved the frequency response of the cold-wire probes. The measurements carried out on the axis of the jet (Re D =16 500, Re λ ≃ 167) showed that the frequency response of the 1.2 μm wire was significantly improved. In fact, the spectral characteristics of the compensated signal obtained with the 1.2 μm wire compared fairly well with those from the 0.58 μm wire. Moreover, the results indicated that the compensation procedure must be applied when the cut-off frequency of the cold-wire f c is lower than two times the Kolmogorov frequency f K. In the case where f c ≃ 0.6f K, the compensation procedure can reduce the error in the estimate of ɛ θ by more than 20%. When f c ≃ 2f K, the effect of the compensation is reduced to about 5%. Received: 3 November 2000/Accepted: 23 March 2001  相似文献   

20.
 An experimental investigation was carried out to study the enhancement of the heat transfer from a heated flat plate fitted with rectangular blocks of 1 × 2 × 2 cm3 dimensions in a channel flow as a function of Reynolds number (Reh), spacing (S y ) of blocks in the flow direction, and the block orientation angle (α) with respect to the main flow direction. The experiments were performed in a channel of 18 cm width and 10 cm height, with air as the working fluid. For fixed S x =3.81 cm, which is the space between the blocks in transverse to the flow direction, the experimental ranges of the parameters were S y =3.33–4.33 cm, α=0–45°, Reh=7625–31550 based on the hydraulic diameter and the average velocity at the beginning of the test section in the channel. Correlations for Nusselt number were developed, and the ratios of heat transfer with blocks to those with no blocks were given. The results indicated that the heat transfer could be enhanced or reduced depending on the spacing between blocks, and the block orientation angle. The maximum heat transfer rate was obtained at the orientation angle of 45°. Received on 13 December 2000 / Published online: 29 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号