首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a scheme for the investigation of the asymptotic behavior of eigenvalues and eigenvectors of a family of self-adjoint compact operators {A: > 0} that act in different spaces and lose their compactness in the limit case 0. We prove the Hausdorff convergence of the spectrum of the operator A to the spectrum of the limit operator A0, obtain asymptotic estimates for this convergence both to points of the discrete spectrum and to points of the essential spectrum of the operator A0, and prove asymptotic estimates for eigenvectors of A. This scheme is applied to the investigation of the asymptotic behavior of eigenvalues and eigenfunctions of the Neumann problem in a thick singularly degenerate junction that consists of two domains connected by an -periodic system of thin rods of fixed length.  相似文献   

2.
Calculations of the three-dimensional boundary layer in an S shaped duct are performed with various – models. Three different near-wall models are used for the – model, of which one is using a new set of near-wall damping functions deduced from direct numerical simulations of turbulent channel flow available in the literature. The results show that it is possible to obtain damping functions giving better agreement, especially for and , with direct simulation data and experiments than with damping functions deduced from trial and error.  相似文献   

3.
The asymptotic behaviour of the TDR step response is compared with the asymptotic behaviour of dielectrics in the frequency domain. For non conducting materials the asymptotic behaviour of the TDR step response appears to be related to the angles of intersection in the Cole-Cole plot. In the case of conducting materials the asymptotic behaviour for t depends on the low frequency conductivity, which suggests a new method of determining this conductivity from TDR experiments. Consequences are discussed for the accuracy of the determination of and from the TDR response obtained experimentally.  相似文献   

4.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

5.
The problem of spherical wave propagation in soil under the action of an intense uniformly decreasing load 0(t) applied to the boundary of a cavity with radius r0 is considered. Soil with a high stress level is modeled either by ideally nonlinearly compressible or elastoplastic material, taking account of linear irreversible unloading for the material. In contrast to [1–7], in order to describe material movement use is made of strain theory [8] with determining functions = (), i=i(i), where , i, , i are the first and second invariants of strain and stress tensors. During material loading these functions are presented in the form of polynomials ()=(i+2¦¦), ii)=(i-2i)i, in which constant coefficients i, i=1, 2) are determined by experiment, taking account of the triaxial stressed state of soil. Solution of the problem is constructed by an analytically reversible method, with prescribed shape for the shock-wave (SW) surface in the form of a second-degree polynomial relating to time t and a numerical method of characteristics for a prescribed arbitrarily decreasing load i(t). On the basis of the analytical equations obtained, calculations are carried out for material parameters (including loading profile) in a computer and stresses and mass velocity of plastic and elastoplastic materials are compared.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 95–100, July–August, 1986.The authors express their sincere thanks to Kh. A. Rakhmatulin for discussing the results of this work.  相似文献   

6.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

7.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

8.
9.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

10.
The numerical model of phase transition in iron in stress waves described in [1] contains equations of state with a limited range of applicability. They do not consider thermal excitation of conduction electrons and the presence of and — -triple point on the phase equilibrium curve, the effect of which should appear in shock loading of porous or preheated specimens. The present study will offer thermodynamically complete equations of state for the -, -, -phases of iron, free of these shortcomings.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 112–114, May–June, 1986.  相似文献   

11.
In this paper, we investigate the interaction of subharmonicresonances in the nonlinear quasiperiodic Mathieu equation,x + [ + (cos 1 t + cos 2 t)] x + x3 = 0.We assume that 1 and that the coefficient of the nonlinearterm, , is positive but not necessarily small.We utilize Lie transform perturbation theory with elliptic functions –rather than the usual trigonometric functions – to study subharmonic resonances associated with orbits in 2m:1 resonance with a respective driver. In particular, we derive analytic expressions that place conditions on (, , 1, 2) at which subharmonic resonance bands in a Poincaré section of action space begin to overlap. These results are used in combination with Chirikov's overlap criterion to obtain an overview of the O() global behavior of equation (1) as a function of and 2 with 1, , and fixed.  相似文献   

12.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

13.
LARGEDEFLECTIONPROBLEMOFTHINORTHOTROPICCIRCULARPLATEONELASTICFOUNDATIONWITHVARIABLETHICKNESSUNDERUNIFORMPRESSURE(王嘉新)(刘杰)LARG...  相似文献   

14.
The paper presents a modified expression for the dissipation rate tensor ij in the second-moment closure models, which employs the dissipation flatness parameterE and the turbulenceRe number. The expression reproduced the distribution among the three diagonal components of ij in agreement with the direct numerical simulation of a plane channel flow ofMansour, Kim and Moin, 1988. Implemented in a low-Re-number differentialRe-stress model the relationship yielded predictions of dissipative components better than other models, albeit spoiled by still unsatisfactory modelling of the equation for the energy dissipation rate . on leave from Mainski Fakultet, University of Sarajevo, Bosnia Hercegovina.  相似文献   

15.
An analytical model for deducing the actual stress-strain properties from laboratory test results is discussed. As an illustration, an elastic bilinear material is used for unconfined cylindrical compression test conditions, as simulated with a finite element analysis. The results obtained are applicable for assisting in evaluating measured strength and stiffness properties of some clay soils, concrete test cylinders, concrete cores, and rock cores.The quantitative results of this study can be used for interpreting measured stress-strain data for unconfined compression test conditions. The error in measured results is shown to be influenced by Poisson's ratio, length-to-diameter ratio of the specimen, end condition, and ratio of inelastic modulus to initial elastic modulus. Curves for adjusting the measured results to the theoretical results are presented.Nomenclature D specimen diameter - E i initial elastic stiffness modulus - E y elastic stiffness modulus beyond the yield stress, plastic or inelastic modulus - L specimen length - axial strain - av average strain - g gage length strain - y yield strain - Poisson's ratio - compressive stress - av average stress - t theoretical compressive stress - y yield stress - ym measured stress at the yield strain  相似文献   

16.
We use the method of multiple scales (MMS) to study small perturbations, governed by a parameter , of a harmonic oscillator by a small term with a large delay. These systems differ significantly from others where small terms have delays; or an term has delay in a system near a Hopf bifurcation. Here, the slow flow in time t depends strongly on even at lowest order, and itself has an delay. The MMS has already been applied elsewhere for such systems, but only to first order and with attention restricted to periodic and quasiperiodic solutions. Here, we address transients as well as proceed to second order. The second order analysis holds unless a special resonance occurs (we assume it does not). Several numerical examples are presented. In each case, the slow flows are infinite-dimensional, show strong -dependence, require significantly less computation time than the full solutions, yet agree well with the same.  相似文献   

17.
The stress-intensity factors for a semi-infinite plane crack with a wavy front are determined when the crack faces are subjected to normal and shearing tractions. The results are derived using asymptotic methods and are valid to O(2) where =A/1; A is the amplitude and is the wavelength of the wavy front. The normal and shearing tractions are in the form of line loads parallel to the crack front.The results are then used to evaluate, in a qualitative manner, the growth characteristics of a semi-infinite plance crack with a wavy front under combined mode loading. This provides a possible explanation of crack front segmentation observed experimentally.  相似文献   

18.
This paper discusses the chaos and bifurcation for equation x+εcosxx+αsinx =εbsint. By use of the Melnikov method the conditions to have the chaotic behavior and to have subharmonic oscillations are given.  相似文献   

19.
Zusammenfassung Zur Integration der Eulerschen Bewegungsgleichungen schwerer symmetrischer Kreisel werden der Winkel (t) (Abb. 1) durch (t)=0+(t) ersetzt und in sämtlichen Reihenentwicklungen von abhängiger Funktionen die Potenzen höheren als zweiten Grades vernachlässigt. Dadurch ist es möglich, die Eulerschen Winkel (t), (t) und (t) durch elementare Formeln zu beschreiben und somit sind die wesentlichsten Erscheinungen im Bewegungsablauf der schweren symmetrischen Kreisel einfach zu übersehen.  相似文献   

20.
Dielectric properties of heterogeneous mixtures with a polar constituent   总被引:1,自引:0,他引:1  
Summary After defining the boundaries for the dielectric constant of a heterogeneous mixture, the behaviour of such a mixture is studied as a function of the frequency, when one of its components is polar. Deviations from a semicircle are to be expected for the function m =f( m ) even when the dielectric properties of the polar constituent can be described with a semicircular Cole-Cole-arc. The relaxation time of the mixture is shorter than that of the polar constituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号