首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-dimensional (1)H-(13)C MAS-J-HMQC solid-state NMR spectra of the two anomeric forms of maltose at natural abundance are presented. The experimental (1)H chemical shifts of the CH and CH(2) protons are assigned using first-principles chemical shift calculations that employ a plane-wave pseudopotential approach. Further calculations show that the calculated change in the (1)H chemical shift when comparing the full crystal and an isolated molecule is a quantitative measure of intermolecular C-H...O weak hydrogen bonding. Notably, a clear correlation between a large chemical shift change (up to 2 ppm) and both a short H...O distance (<2.7 A) and a CHO bond angle greater than 130 degrees is observed, thus showing that directionality is important in C-H...O hydrogen bonding.  相似文献   

2.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

3.
We report the first solid-state NMR, crystallographic, and quantum chemical investigation of the origins of the 13C NMR chemical shifts of the imidazole group in histidine-containing dipeptides. The chemical shift ranges for Cgamma and Cdelta2 seen in eight crystalline dipeptides were very large (12.7-13.8 ppm); the shifts were highly correlated (R2= 0.90) and were dominated by ring tautomer effects and intermolecular interactions. A similar correlation was found in proteins, but only for buried residues. The imidazole 13C NMR chemical shifts were predicted with an overall rms error of 1.6-1.9 ppm over a 26 ppm range, by using quantum chemical methods. Incorporation of hydrogen bond partner molecules was found to be essential in order to reproduce the chemical shifts seen experimentally. Using AIM (atoms in molecules) theory we found that essentially all interactions were of a closed shell nature and the hydrogen bond critical point properties were highly correlated with the N...H...O (average R2= 0.93) and Nepsilon2...H...N (average R2= 0.98) hydrogen bond lengths. For Cepsilon1, the 13C chemical shifts were also highly correlated with each of these properties (at the Nepsilon2 site), indicating the dominance of intermolecular interactions for Cepsilon1. These results open up the way to analyzing 13C NMR chemical shifts, tautomer states (from Cdelta2, Cepsilon1 shifts), and hydrogen bond properties (from Cepsilon1 shifts) of histidine residue in proteins and should be applicable to imidazole-containing drug molecules bound to proteins, as well.  相似文献   

4.
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face.  相似文献   

5.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

6.
Structures of superelectrophilic protonated propenoyl (H2C=CH-COH2+) and isopentenoyl ((CH3)2C=CH-COH2+) dications and their parent cations were calculated using ab initio methods at the MP2/6-311+G and MP2/cc-pVTZ levels. Energies were calculated using Gaussian-2 (G2) theory. The alpha-carbon (Calpha) protonated 3 and 7 were found to be the global minima for protonated propenoyl and isopentenoyl dications, respectively. 13C NMR chemical shifts of the cations were also calculated using the GIAO-CCSD(T), GIAO-MP2 and GIAO-SCF methods. 13C NMR chemical shifts of the related tert-butyl cation ((CH3)3C+) and protonated tert-butyl dication ((CH3)2CCH4(2+)) were also computed at the same level to compare and explore the effect of the additional charge in dications.  相似文献   

7.
Substituted isobenzofuranone derivatives 1a-3a and bindone 4 are characterized by the presence of an intramolecular C(Ar)-H···O hydrogen bond in the crystal (X-ray), solution ((1)H NMR and specific and nonspecific IEF-PCM solvation model combined with MP2 and B3LYP methods), and gas (MP2 and B3LYP) phases. According to geometric and AIM criteria, the C(Ar)-H···O interaction weakens in 1a-3a (independent of substituent nature) and in 4 with the change in media in the following order: gas phase > CHCl(3) solution > DMSO solution > crystal. The maximum value of hydrogen bond energy is 4.6 kcal/mol for 1a-3a and 5.6 kcal/mol for 4. Both in crystals and in solutions, hydrogen bond strength increases in the order 1a < 2a < 3a with the rising electronegativity of the ring substituents (H < OMe < Cl). The best method for calculating (1)H NMR chemical shifts (δ(calcd) - δ(expl) < 0.7 ppm) of hydrogen bonded and nonbonded protons in 1a-3a and 1b-3b (isomers without hydrogen bonds) is the GIAO method at the B3LYP level with the 6-31G** and 6-311G** basis sets. For the C-H moiety involved in the hydrogen bond, the increase of the spin-spin coupling constant (1)J((13)C-(1)H) by about 7.5 Hz is in good agreement with calculations for C-H bond shortening and for blue shifts of C-H stretching vibrations (by 55-75 cm(-1)).  相似文献   

8.
1H and 13C chemical shifts of PVC chains have been evaluated using quantum chemistry methods in order to evidence and interpret the NMR signatures of chains bearing unsaturated and branched defects. The geometrical structures of the stable conformers have been determined using molecular mechanics and the OPLS force field and then density functional theory with the B3LYP functional and the 6-311G(d) basis set. The nuclear shielding tensor has been calculated at the coupled-perturbed Kohn-Sham level (B3LYP exchange-correlation functional) using the 6-311+G(2d,p) basis set. The computational scheme accounts for the large number of stable conformers of the PVC chains, and average chemical shifts are evaluated using the Maxwell-Boltzmann distribution. Moreover, the chemical shifts are corrected for the inherent and rather systematic errors of the method of calculation by employing linear regression equations, which have been deduced from comparing experimental and theoretical results on small alkane model compounds containing Cl atoms and/or unsaturations. For each type of defect, PVC segments presenting different tacticities have been considered because it is known from linear PVC chains that the racemic (meso) dyads are characterized by larger (smaller) chemical shifts. NMR signatures of unsaturations in PVC chains have been highlighted for the internal -CH=CH- and -CH=CCl- units as well as for terminal unsaturations like the chloroallylic -CH=CH-CH2Cl group. In particular, the 13C chemical shifts of the two sp2 C atoms are very close for the chloroallylic end group. The CH2 and CHCl units surrounding an unsaturation present also specific 13C chemical shifts, which allow distinguishing them from the others. In the case of the proton, the CH2 unit of the -CHCl-CH2-CCl=CH- segment presents a larger chemical shift (2.6-2.7 ppm), while some CHCl units close to the -CH=CH- unsaturations appear at rather small chemical shifts (3.7 ppm). The -CH2Cl and -CHCl-CH2Cl branches also display specific signatures, which result in large part from modifications of the equilibrium conformations and their reduced number owing to the increased steric interactions. These branches lead to the appearance of 13C peaks at lower field associated either to the CH unit linking the -CH2Cl and -CHCl-CH2Cl branches (50 ppm) or to the CHCl unit of the ethyl branches (60 ppm). The corresponding protons resonate also at specific frequencies: 3.5-4.0 ppm for the -CH2Cl branch or 3.8-4.2 ppm for the terminal unit of the -CHCl-CH2Cl branch. Several of these signatures have been detected in the experimental 1H and 13C NMR spectra and are consistent with the reaction mechanisms.  相似文献   

9.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

10.
The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data.  相似文献   

11.
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ~2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ~500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ~100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.  相似文献   

12.
NMR chemical shifts of 1H, 13C, and 73Ge are reported for a series of monosubstituted aromatic trimethylgermanes of the type XC6H4Ge(CH3)3; X = p-N(CH3)2, p-OCH3, p-OC2H5, p-C(CH3)3, p-Si(CH3)3, p-Ge(CH3)3, p-Sn(CH3)3, p-CH3, m-CH3, -H, m-OCH3, p-Cl, p-Br, m-F, m-CF3, p-CF3, o-OCH3, and o-CH3. The relatively narrow 73Ge resonances show a strong correlation with Hammett sigma constants, with a correlation coefficient of 0.976 and 0.876 for 73Ge chemical shifts in meta- and para-substituted derivatives, respectively. The 13C chemical shifts of the methyl carbons bonded to germanium also display a relationship, with correlation coefficients of 0.904, 0.993, and 0.911 for para-, meta- and all derivatives, respectively. Comparisons of the Hammett plots for the homologous series XC6H4M(CH3)3; M = C, Si, Ge, Sn, show that, in general, correlation coefficients decrease while slopes increase significantly down the group, presumably reflecting the corresponding increase in chemical shift range of the group 14 atom. The Hammett constant derived for the p-Ge(CH3)3 group of +0.13 compares with the NMR-derived constants of -0.12 for p-C(CH3)3, +0.14 for p-Si(CH3)3, and -0.14 for p-Sn(CH3)3. The indication of electron release by carbon and tin can be rationalized through traditional hyperconjugative arguments for carbon and by the low electronegativity and consequent inductive effect of tin. The small electron attraction suggested by the positive constants for silicon and germanium can be simply, and perhaps naively, attributed to pi-acceptor interactions with the benzene ring.  相似文献   

13.
In this study, we present an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases in the double (CH4 + tetramethylammonium hydroxide (Me(4)NOH)) and (H2 + Me(4)NOH) ionic clathrate hydrates using solid-state NMR spectroscopy (high-powered decoupling and CP/MAS) and powder X-ray diffraction. It was confirmed that structure-I (sI) and structure-II (sII) hydrates coexist as the water concentration increases. In the Me(4)NOH-depleted region, the unique tuning phenomenon was first observed at a chemical shift of -8.4 ppm where relatively small gaseous CH4 molecules partly occupy the sII large cages (sII-L), pulling out large cationic Me(4)N+ that is considered to be strongly bound with the surrounding host lattices. Moreover, we note that, while pure Me(4)NOH.16H(2)O clathrate hydrates melted at 249 K under atmospheric pressure conditions, the double (CH4 + Me(4)NOH) clathrate hydrate maintained a solid state up to approximately 283 K under 120 bar of CH4 with a conductivity of 0.065 S cm(-1), suggesting its potential use as a solid electrolyte. The present results indicate that ionic contributions must be taken into account for ionic clathrate hydrate systems because of their distinctive guest dynamic behavior and structural patterns. In particular, microscopic analyses of ionic clathrate hydrates for identifying physicochemical characteristics are expected to provide new insights into inclusion chemistry.  相似文献   

14.
The [Cs((2 + x))][H(3)O((1 - x))]Tc(2)Br(8)·4.6H(2)O (x = 0.221) salt has been synthesized and characterized by single crystal XRD. Multi-configurational quantum chemical calculations on Tc(2)X(8)(n-) (X = Cl, Br; n = 2, 3) have been performed and indicate the π component in the Tc-Tc bond to be stronger for n = 3.  相似文献   

15.
The 17O-NMR spectra of 1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone (juglone) have been recorded in CDCl3 solution at 40°. In juglone the 17O resonance of the carbonyl peri to the OH group was displaced by 70 ppm to low frequency relative to the resonance in the para-position. It is shown that this chemical shift arises mainly from intramolecular H-bonding, the substituent and steric effects being one order of magnitude smaller. Large carbonyl 17O chemical shifts between ?34 and ?100 ppm were also observed in a series of aromatic aldehydes and ketones where intramolecular H-bonds of the C?O…?H? O type are formed. The H-bond-induced carbonyl 17O chemical shifts were linearly correlated with both the 17O and 1H chemical shifts of the OH groups. They represent a most sensitive measure of the strength of intramolecular H-bonds. The 17O resonances of the OH groups were directed to high frequency on H-bonding. Analysis of the 17O chemical shifts in 2,2′-dihydroxy-benzophenone showed clearly that the two OH groups build H-bonds simultaneously to the single carbonyl group. The 17O linewidths decreased strongly on H-bonding; the linewidth of the H-bonded carbonyl O-atom in juglone, for example, was reduced by 25% with respect to that of the free carbonyl O-atom. The carbonyl O-atom quadrupole coupling constants in juglone, evaluated from the combined use of 13C and 17O relaxation times, were 9.5 and 11.0 MHz, respectively. No correlation was observed between the H-bond-induced 17O chemical shifts and the variations in 17O quadrupole coupling constants.  相似文献   

16.
The specific interaction between lithium ions and the tropolonate ion (C(7)H(5)O(2)-: L-) was examined by means of UV-visible and 1H or 13C NMR spectroscopy in acetonitrile and other solvents. On the basis of the electronic spectra, we can propose the formation of not only coordination-type species (Li+(L-)2) and the ion pair (Li+L-) but also a "triple cation" ((Li+)2L-) in acetonitrile and acetone; however, no "triple cation" was found in N,N-dimethylformamide (DMF) and in dimethylsulfoxide (DMSO), solvents of higher donicities and only ion pair formation between Li+ and L- in methanol of much higher donicity and acceptivity. The 1H NMR chemical shifts of the tropolonate ion with increasing Li+ concentration verified the formation of (Li+)2L- species in CD3CN and acetone-d6, but not in DMF-d6 or CD(3)OD. With increasing concentration of LiClO(4) in CD(3)CN, the 1H NMR signals of 4-isopropyltropolone (HL') in coexistence with an equivalent amount of Et(3)N shifted first toward higher and then toward lower magnetic-fields, which were explained by the formation of (Li+)(Et(3)NH+)L'- and by successive replacement of Et(3)NH+ with a second Li+ to give (Li+)2L'-. In CD(3)CN, the 1,2-C signal in the 13C NMR spectrum of tetrabutylammnium tropolonate (n-Bu(4)NC(7)H(5)O) appeared at an unexpectedly lower magnetic-field (184.4 ppm vs TMS) than that of tropolone (172.7 ppm), while other signals of the tropolonate showed normal shifts toward higher magnetic-fields upon deprotonation from tropolone. Nevertheless, with addition of LiClO(4) at higher concentrations, the higher and lower shifts of magnetic-fields for 1,2-C and other signals, respectively, supported the formation of the (Li+)2L- species, which can cause redissolution of LiL precipitates. All of the data with UV-visible and 1H and 13C NMR spectroscopy demonstrated that the protonated tropolone (or the dihydroxytropylium ion), H(2)L+, was produced by addition of trifluoromethanesulfonic or methanesulfonic acid to tropolone in acetonitrile. The order of the 5-C and 3,7-C signals in 13C NMR spectra of the tropolonate ions was altered by addition of less than an equivalent amount of H+ to the tropolonate ion in CD(3)CN. Theoretical calculations satisfied the experimental 13C NMR chemical shift values of L-, HL, and H(2)L+ in acetonitrile and were in accordance with the proposed reaction schemes.  相似文献   

17.
In this study, we report nearest neighbor residue effects statistically determined from a chemical shift database. For an amino acid sequence XYZ, we define two correction factors, Delta((X)Y)n,s and Delta(Y(Z))n,s, representing the effects on Y's chemical shifts from the preceding residue (X) and the following residue (Z), respectively, where X, Y, and Z are any of the 20 naturally occurring amino acids, n stands for (1)H(N), (15)N, (1)H(alpha), (13)C(alpha), (13)C(beta), and (13)C' nuclei, and s represents the three secondary structural types beta-strand, random coil, and alpha-helix. A total of approximately 14400 Delta((X)Y)n,s and Delta(Y(Z))n,s, representing nearly all combinations of X, Y, Z, n, and s, have been quantitatively determined. Our approach overcomes the limits of earlier experimental methods using short model peptides, and the resulting correction factors have important applications such as chemical shift prediction for the folded proteins. More importantly, we have found, for the first time, a linear correlation between the Delta((X)Y)n,s (n = (15)N) and the (13)C(alpha) chemical shifts of the preceding residue X. Since (13)C(alpha) chemical shifts of the 20 amino acids, which span a wide range of 40-70 ppm, are largely dominated by one property, the electron density of the side chain, the correlation indicates that the same property is responsible for the effect on the following residue. The influence of the secondary structure on both the chemical shifts and the nearest neighbor residue effect are also investigated.  相似文献   

18.
Dimesitylketone O-oxide 1b was synthesized by photolysis of dimesityldiazomethane dissolved in an oxygen saturated CCl3F solution at 140 K. Conformation and geometry of 1b were determined by comparing measured NMR chemical shifts with the corresponding chemical shifts calculated at the DFT-IGLO level of theory where it had to be considered that the molecule exists in two enantiomeric forms. Measured and calculated 1H chemical shifts agree within 0.1 ppm while the calculated 13C shift of the COO carbon (210.6 ppm) differs by only 0.4 ppm from the measured shift of 211.0 ppm. The two mesityl rings are perpendicular to each other and enclose angles of 40 and 57 degrees with the COO plane. The preferred rearrangement process of 1b is an H migration from one of the ortho-methyl groups to the terminal O atom of the COO unit. The calculated activation enthalpy of this process is 12.7 kcal/mol (B3LYP/cc-pVTZ). In contrast, the activation enthalpy for isomerization to dioxirane is 5 kcal/mol higher. In CCl3F, the activation barrier for the thermal decay was determined to be 13.8 +/- 0.2 kcal/mol and in acetonitrile 13.1 +/- 0.4 kcal/mol. H migration initiates cleavage of the OO bond and the production of an OH and a benzyl radical. Recombination of the latter in the solvent cage leads to the formation of 2-methylhydroxy-pentamethylbenzophenone, while escape of the OH radical from the solvent cage yields a ketone. These results confirm the possibility of OH production from carbonyl oxides in the solution phase.  相似文献   

19.
Electronic structure, molecular electrostatic potential, and vibrational frequencies of para-substituted calix[n]arene CX[n]-R (n = 4, 5; R = H, NH(2), t-Bu, CH(2)Cl, SO(3)H, NO(2)) and their thia analogs (S-CX[n]-R; with R = H and t-Bu) in which sulfur bridges two aromatic rings of CX[n] have been derived from the density functional theory. A rotation around CH(2) groups connecting the phenol rings engenders four, namely, cone, partial cone, 1,2-alternate, and 1,3-alternate CX[n]-R conformers. Of these, the cone conformer comprising of large number of O1-H1···O1' interactions turns out to be of lowest energy. Normal vibration analysis reveal the O1-H1 stretching frequency of unsubstituted CX[n] shifts to higher wavenumber (blue shift) on substitution of electron-withdrawing (NO(2) or SO(3)H) groups, while electron-donating substituents (NH(2), t-Bu) engender a shift of O1-H1 vibration in the opposite direction (red shift). The direction of frequency shifts have been analyzed using natural bond orbital analysis and molecular electrostatic potential (MESP) topography. Furthermore, calculated (1)H NMR chemical shift (δ(H)) in modified CX[n] hosts follow the order: H1 > H3/H5 > H7(a) > H7(b). The δ(H) values in CX[4] are in consonant with the observed (1)H NMR spectra.  相似文献   

20.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号