首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between B(C(6)F(5))(3) and NH(3)(g) in light petroleum yielded the solvated adduct H(3)N.B(C(6)F(5))(3).NH(3). Treatment with a second equivalent of B(C(6)F(5))(3) afforded H(3)N.B(C(6)F(5))(3). Attempts to prepare the analogous alane adduct were unsuccessful and resulted in protolysis. Related compounds of the form R'R' 'N(H).M(C(6)F(5))(3) were synthesized from M(C(6)F(5))(3) and the corresponding primary and secondary amines (M = B, Al; R' = H, Me, CH(2)Ph; R' ' = Me, CH(2)Ph, CH(Me)(Ph); R'R' ' = cyclo-C(5)H(10)). The solid-state structures of 13 new compounds have been elucidated by single-crystal X-ray diffraction and are discussed. Each of the borane adducts has a significant bifurcated intramolecular hydrogen bond between an amino hydrogen and two o-fluorines, while N-H...F-C interactions in the alane adducts are weaker and more variable. (19)F NMR studies demonstrate that the borane adducts retain the bifurcated C-F...H...F-C hydrogen bond in solution. Compounds of the type R'R' 'N(H).M(C(6)F(5))(3) conform to Etter's rules for the prediction of hydrogen-bonding interactions.  相似文献   

2.
The nature and importance of C-H···F-C interactions is a topical yet controversial issue, and the development of spectroscopic methods to probe such contacts is therefore warranted. A series of Group 4 bis(benzyl) complexes supported by (σ-aryl)-2-phenolate-6-pyridyl [O,C,N-R(1)] ligands bearing a fluorinated R(1) group (CF(3) or F) in the vicinity of the metal has been prepared. The X-ray crystal structure of the CF(3)-substituted Hf derivative features intramolecular C-H···F-C and Hf···F-C contacts. All complexes have been characterized by multinuclear NMR spectroscopy. The (1)H and (13)C NMR spectra of [M(O,C,N-CF(3))(CH(2)Ph)(2)] derivatives display coupling (assigned to (1h)J(HF) and (2h)J(CF) for Ti; (3)J(HF) and (2)J(CF) (through M···F) for Hf and Zr) between the benzyl CH(2) and CF(3) moieties. [(1)H,(19)F]-HMBC NMR experiments have been performed for the M-[O,C,N-R(1)] complexes and their [O,N,C] counterparts, revealing significant scalar coupling across the C-H···F-C interactions for Ti-[O,C,N] and [O,N,C] species.  相似文献   

3.
[(3,5-(CF(3))(2)Pz)(AgL)(2)](+)[Ag(5)(3,5-(CF(3))(2)Pz)(6)(CH(3)CN)](-) (L = 2-(N,N-diethylanilino-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine) shows bright and tunable emissions influenced by its supramolecular structure. Columnar stacks are assembled via cooperative interactions that include Ag(I)···Ag(I) argentophilic bonding, π···π stacking and Ag(I)···π interactions.  相似文献   

4.
The iridium(perfluoropropyl)(vinyl) complex CpIr(PMe(3))(n-C(3)F(7))(CH=CH(2)) (5) has been prepared. It has been characterized by X-ray crystallography, and its ground state conformation in solution has been determined by (19)F{(1)H} HOESY NMR studies. It reacts with the weak acid lutidinium iodide to afford the eta(1)-allylic complex CpIr(PMe(3))((Z)-CH(2)CH=CFC(2)F(5))I (6), which has also been characterized crystallographically. The mechanism of C-F bond activation and C-C bond formation leading to 6 has been elucidated in detail by studying the reaction of 5 with lutidinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate [LutH(+)B(ArF)(4)(-)], containing a weakly coordinating counteranion. The main kinetic product of this reaction, determined by (19)F{(1)H} HOESY studies at -50 degrees C, is the endo-CpIr(PMe(3))(anti-eta(3)-CH(2)CHCFCF(2)CF(3))[B(ArF)(4)] diastereomer 9, along with a small amount of the exo-syn-isomer 8. Isomer 9 rearranges at -20 degrees C to its exo-anti isomer 7, and subsequently to the thermodynamically favored exo-syn-isomer 8, which has been isolated and crystallographically characterized. Complex 8 reacts with iodide to afford complex6. On the basis of the unambiguously defined kinetically controlled stereochemistry of 9 and 8, a detailed mechanism for the C-F activation/C-C coupling reaction is proposed, the principal conclusion of which is that C-F activation is completely diastereoselective.  相似文献   

5.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

6.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

7.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

8.
The first quaternary salts of pyridine (2), N-methyl imidazole (3), N-propyl triazole (4), and pyridazine (5) that contain the pentafluorosulfanyl (SF(5)) group were prepared and characterized. Neat reactions of the aromatic nitrogen compounds with SF(5)(CF(2))(n)(CH(2))(m)I (n = 2 or 4, m = 2 or 4) gave quaternary iodides 6a-c, 7a-c, 8a, and 9a,b, which were metathesized with LiN(SO(2)CF(3))(2) to form the bis(trifluoromethylsulfonyl)amides 10a-c, 11a-c, 12a, and 13a,b, in high yields. With the exception of the pyridine bis(trifluoromethylsulfonyl)amide salts, the compounds melted or exhibited a T(g) at <0 degrees C. The methylimidazolium, pyridinium, and pyridazinium salts exhibited densities of approximately 2 g/cm(3). Particularly striking was the density of CF(3)(CF(2))(5)(CH(2))(2)-pyridazinium N(CF(3)SO(2))(2) measured at 2.13 g/cm(3); however, an atypically high density for the 1-CF(3)(CF(2))(5)(CH(2))(2)-3-methyl imidazolium amide (14) was also observed at 1.77 g/cm(3). All quaternary salts were characterized via IR, (19)F, (1)H, and (13)C NMR spectra and elemental analyses.  相似文献   

9.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

10.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

11.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

12.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

13.
Liu TF  Lü J  Tian C  Cao M  Lin Z  Cao R 《Inorganic chemistry》2011,50(6):2264-2271
A series of coordination polymers with anionic, cationic, and neutral metal-carboxylate frameworks have been synthesized by using a flexible tetrapodal ligand tetrakis[4-(carboxyphenyl)oxamethyl] methane acid (H(4)X). The reactions between divalent transition-metal ions and H(4)X ligands gave [M(3)X(2)]·[NH(2)(CH(3))(2)](2)·8DMA (M = Co (1), Mn (2), Cd(3)) which have anionic metal-carboxylate frameworks with NH(2)(CH(3))(2)(+) cations filled in channels. The reactions of trivalent metal ions Y(III), Dy(III), and In(III) with H(4)X ligands afforded cationic metal-carboxylate frameworks [M(3)X(2)·(NO(3))·(DMA)(2)·(H(2)O)]·5DMA·2H(2)O (M = Y(4), Dy(5)) and [In(2)X·(OH)(2)]·3DMA·6H(2)O (6) with the NO(3)(-) and OH(-) serving as counterions, respectively. Moreover, a neutral metal-carboxylate framework [Pb(2)X·(DMA)(2)]·2DMA (7) can also be isolated from reaction of Pb(II) and H(4)X ligands. The charged metal-carboxylate frameworks 1-5 have selectivity for specific counterions in the reaction system, and compounds 1 and 2 display ion-exchange behavior. Moreover, magnetic property measurements on compounds 1, 2, and 5 indicate that there exists weak antiferromagnetic interactions between magnetic centers in the three compounds.  相似文献   

14.
The ligand L(bip), containing two bidentate pyrazolyl-pyridine termini separated by a 3,3'-biphenyl spacer, has been used to prepare tetrahedral cage complexes of the form [M(4)(L(bip))(6)]X(8), in which a bridging ligand spans each of the six edges of the M(4) tetrahedron. Several new examples have been structurally characterized with a variety of metal cation and different anions in order to examine interactions between the cationic cage and various anions. Small anions such as BF(4)(-) and NO(3)(-) can occupy the central cavity where they are anchored by an array of CH···F or CH···O hydrogen-bonding interactions with the interior surface of the cage, but larger anions such as naphthyl-1-sulfonate or tetraphenylborate lie outside the cavity and interact with the external surface of the cage via CH···π interactions or CH···O hydrogen bonds. The cages with M = Co and M = Cd have been examined in detail by NMR spectroscopy. For [Co(4)(L(bip))(6)](BF(4))(8) the (1)H NMR spectrum is paramagnetically shifted over the range -85 to +110 ppm, but the spectrum has been completely assigned by correlation of measured T(1) relaxation times of each peak with Co···H distances. (19)F DOSY measurements on the anions show that at low temperature a [BF(4)](-) anion diffuses at a similar rate to the cage superstructure surrounding it, indicating that it is trapped inside the central cage cavity. Furthermore, the equilibrium step-by-step self-assembly of the cage superstructure has been elucidated by detailed modeling of spectroscopic titrations at multiple temperatures of an acetonitrile solution of L(bip) into an acetonitrile solution of Co(BF(4))(2). Six species have been identified: [Co(2)L(bip)](4+), [Co(2)(L(bip))(2)](4+), [Co(4)(L(bip))(6)](8+), [Co(4)(L(bip))(8)](8+), [Co(2)(L(bip))(5)](4+), and [Co(L(bip))(3)](2+). Overall the assembly of the cage is entropy, and not enthalpy, driven. Once assembled, the cages show remarkable kinetic inertness due to their mechanically entangled nature: scrambling of metal cations between the sites of pure Co(4) and Cd(4) cages to give a statistical mixture of Co(4), Co(3)Cd, Co(2)Cd(2), CoCd(3) and Cd(4) cages takes months in solution at room temperature.  相似文献   

15.
The synthesis and characterization of the complexes of Cu(I), Ag(I), Cu(II), and Co(II) ions with 1,2,5-selenadiazolopyridine (psd) is reported. The following complexes have been prepared: [Cu(2)(psd)(3)(CH(3)CN)(2)](2+)2(PF(6)(-)); [(CuCl)(2)(psd)(3)]; [Cu(2)(psd)(6)](2+)2(ClO(4))(-); [Ag(2)(psd)(2)](2+)2(NO(3))(-); [Ag(2)(psd)(2)](2+)2(CF(3)COO)(-); [Cu(psd)(2)(H(2)O)(3)](2+)2(ClO(4))(-)·(psd)(2); [Cu(psd)(4)(H(2)O)](2+)2(ClO(4))(-)·(CHCl(3)); [Cu(psd)(2)(H(2)O)(3)](2+)2(NO(3))(-)·(H(2)O)·(psd)(2), and [Co(psd)(2)(H(2)O)(4)](2+)2(ClO(4))(-)·(psd)(2). The electronic structure of ligand psd, in particular the bond order of Se-N bonds, has been probed by X-ray diffraction, (77)Se NMR, and computational studies. A detailed analysis of the crystal structures of the ligand and the complexes revealed interesting supramolecular assembly. The assembly was further facilitated by the presence of neutral ligands for some complexes (Cu(II) and Co(II)). The molecular structure of the ligand showed that it was present as a dimer in the solid state where the monomers were linked by strong secondary bonding Se···N interactions. The crystal structures of Cu(I) and Ag(I) complexes revealed the dinuclear nature with characteristic metallophilic interactions [M···M] (M = Cu, Ag), while the Cu(II) and Co(II) complexes were mononuclear. The presence of M···M interactions has been further probed by Atoms in Molecules (AIM) calculations. The paramagnetic Cu(II) and Co(II) complexes have been characterized by UV-vis, ESI spectroscopy, and room temperature magnetic measurements.  相似文献   

16.
New silver(I) complexes have been synthesized from the reaction of AgNO(3), monodentate tertiary phosphanes PR(3) (PR(3) = P(C(6)H(5))(3), P(o-C(6)H(4)CH(3))(3), P(m-C(6)H(4)CH(3))(3), P(p-C(6)H(4)CH(3))(3), PCH(3)(C(6)H(5))(2)) and two novel electron withdrawing ligands: potassium dihydrobis(3-nitropyrazol-1-yl)borate and potassium dihydrobis(3-trifluoromethylpyrazol-1-yl)borate. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear ((1)H, (19)F and (31)P) NMR spectroscopy. Solid state structures of the potassium salts K[H(2)B(3-(NO(2))pz)(2)] and K[H(2)B(3-(CF(3))pz)(2)] have been reported. They form polymeric networks due to intermolecular contacts of various types between the potassium ion and atoms of the neighboring molecules. The silver adducts [H(2)B(3-(NO(2))pz)(2)]Ag[P(C(6)H(5))(3)](2) and [H(2)B(3-(NO(2))pz)(2)]Ag[P(p-C(6)H(4)CH(3))(3)] have pseudo tetrahedral and trigonal planar silver sites, respectively. The bis(pyrazolyl)borate ligand acts as a kappa(2)-N(2) donor. The nitro-substituents are coplanar with the pyrazolyl rings in all these adducts indicating efficient electron delocalization between the two units. The [H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)] complex has been obtained from re-crystallization of {[H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)](2)} in a dichloromethane-diethyl ether solution; it is a three-coordinate, trigonal planar silver complex.  相似文献   

17.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

18.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

19.
Two chiral, porous uranium methylenediphosphonates, [C(2)H(10)N(2)]{UO(2)[CH(2)(PO(3))(2)]}·H(2)O (UC1P2N-1) and [N(C(2)H(5))(4)]K{(UO(2))(3)[CH(2)(PO(3))(2)](2)(H(2)O)(2)}·1.5H(2)O (KUC1P2-1), have been synthesized without chiral starting materials. Both compounds display channels ~1 × 1 nm that are large enough for these materials to conduct ion-exchange with coordination complexes such as [Co(en)(3)](3+).  相似文献   

20.
The reactions of bifunctional carboxylate ligands (1,8-naphthalimido)propanoate, (L(C2)(-)), (1,8-naphthalimido)ethanoate, (L(C1)(-)), and (1,8-naphthalimido)benzoate, (L(C4)(-)) with Cu(2)(O(2)CCH(3))(4)(H(2)O)(2) in methanol or ethanol at room temperature lead to the formation of novel dimeric [Cu(2)(L(C2))(4)(MeOH)(2)] (1), [Cu(2)(L(C1))(4)(MeOH)(2)]·2(CH(2)Cl(2)) (2), [Cu(2)(L(C4))(4)(EtOH)(2)]·2(CH(2)Cl(2)) (3) complexes. When the reaction of L(C1)(-) with Cu(2)(O(2)CCH(3))(4)(H(2)O)(2) was carried out at -20 °C in the presence of pyridine, [Cu(2)(L(C1))(4)(py)(4)]·2(CH(2)Cl(2)) (4) was produced. At the core of complexes 1-3 lies the square Cu(2)(O(2)CR)(4) "paddlewheel" secondary building unit, where the two copper centers have a nearly square pyramidal geometry with methanol or ethanol occupying the axial coordination sites. Complex 4 contains a different type of dimeric core generated by two κ(1)-bridging carboxylate ligands. Additionally, two terminal carboxylates and four trans situated pyridine molecules complete the coordination environment of the five-coordinate copper(II) centers. In all four compounds, robust π···π stacking interactions of the naphthalimide rings organize the dimeric units into two-dimensional sheets. These two-dimensional networks are organized into a three-dimensional architecture by two different noncovalent interactions: strong π···π stacking of the naphthalimide rings (also the pyridine rings for 4) in 1, 3, and 4, and intermolecular hydrogen bonding of the coordinated methanol or ethanol molecules in 1-3. Magnetic measurements show that the copper ions in the paddlewheel complexes 1-3 are strongly antiferromagnetically coupled with -J values ranging from 255 to 325 cm(-1), whereas the copper ions in 4 are only weakly antiferromagnetically coupled. Typical values of the zero-field splitting parameter D were found from EPR studies of 1-3and the related known complexes [Cu(2)(L(C2))(4)(py)(2)]·2(CH(2)Cl(2))·(CH(3)OH), [Cu(2)(L(C3))(4)(py)(2)]·2(CH(2)Cl(2)) and [Cu(2)(L(C3))(4)(bipy)]·(CH(3)OH)(2)·(CH(2)Cl(2))(3.37) (L(C3)(-) = (1,8-naphthalimido)butanoate)), while its abnormal magnitude in [Cu(2)(L(C2))(4)(bipy)] was qualitatively rationalized by structural analysis and DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号