首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparative analysis of recent literature data on hydrophilization of semiconductor quantum dots, which are actively used at present in various fields, has been performed. The main methods of preparation of hydrophilic quantum dots are considered: synthesis of the particles in aqueous solutions; replacement of hydrophobic ligands with hydrophilic ligands in the shells stabilizing the particles; creation of a second, water-soluble shell around the hydrophobic particles; and various methods of post-preparative treatment to improve photoluminescent properties of quantum dots.  相似文献   

2.
Chien FC  Kuo CW  Chen P 《The Analyst》2011,136(8):1608-1613
The blinking phenomena of the quantum dots have been utilized in the super-resolution localization microscopy to map out the locations of individual quantum dots on a total internal reflection microscope. Our result indicated that the reconstructed image of quantum dots agreed with the topographic image measured by atomic force microscopy. Because of the superior optical properties of the quantum dots, the high localization resolution can be achieved in the shorter acquisition time with larger detected photon numbers. When the cells were labeled with quantum dots, the sub-cellular structures could be clearly seen in the reconstructed images taken by a commercial microscope without using complicated optical systems, special photo-switchable dye pairs or photo-activated fluorescence proteins.  相似文献   

3.
In-situ encapsulation of quantum dots into polymer microspheres   总被引:2,自引:0,他引:2  
We have incorporated fluorescent quantum dots (QDs) into polystyrene microspheres using functionalized oligomeric phosphine (OP) ligands. We find that a uniform distribution of quantum dots is loaded inside each polymer bead. Some local close-packing of quantum dots in the beads is attributed to the self-polymerization of the functionalized ligands. The presence of quantum dots disturbs the nucleation and growth processes during the formation of polymer microspheres and results in a wider size distribution of the quantum dot-embedded polystyrene beads than for the control without dots. The change in quantum efficiency of the quantum dots before (approximately 20%) and after (12%) loading into the beads substantiates the protection of oligomeric phosphine ligands yet indicates that the properties of these quantum dots are still affected during processing.  相似文献   

4.
Synthesis and application of quantum dots FRET-based protease sensors   总被引:2,自引:0,他引:2  
Preparation of FRET-based quantum dots as protease sensors-RGDC peptide molecules are bound to the surface of CdSe/ZnS quantum dots. The peptide molecules are then labeled with rhodamine dye molecules. The emission color of the quantum dots change from green to orange due to fluorescence resonance energy transfer (FRET) between the quantum dots and the bound rhodamine molecules. Cleavage of the peptide by selective proteases releases the rhodamine molecules from the quantum dots surface, which results in decreasing FRET efficiency between the quantum dots and the rhodamine molecules. The emission color of the quantum dots changes back to green.  相似文献   

5.

The review discusses the main methods used to obtain surface-modified quantum dots, specifically silicon, heavy metal chalcogenide and pnictide semiconductor nanoparticles. Examples of transformation processes of the grafted layer are considered. The importance of surface modification of AIIBVI- and AIIIBV-type semiconductor nanoparticles for the practical application of quantum dots is shown. It was determined that the most promising areas of their practical application are biology, medicine, and pharmacology. Special attention is paid to the hydrophilization of quantum dots, because only these materials can be used in biomedical applications. Modification of the quantum dot surface with amino acids is considered.

  相似文献   

6.
pH-sensitive quantum dots   总被引:2,自引:0,他引:2  
We have designed organic ligands able to adsorb on the surface of CdSe-ZnS core-shell quantum dots and switch the luminescence of the inorganic nanoparticles in response to hydroxide anions. These compounds incorporate a [1,3]oxazine ring within their molecular skeleton, which reacts with the nucleophilic hydroxide anion to generate a 4-nitrophenylazophenolate chromophore. The chromogenic transformation activates an energy transfer pathway from the quantum dot to the adsorbed chromophores. As a result, the luminescence intensity of the coated nanoparticles decreases significantly in the presence of hydroxide anions. In fact, this mechanism can be exploited to probe the pH of aqueous solutions. Indeed, an increase in pH from 7.1 to 8.5 translates into a 35% decrease in the luminescence intensity of the sensitive quantum dots. Thus, our operating principles for luminescence switching can efficiently transduce a chemical stimulation into a change in the emissive response of semiconductor nanoparticles. In principle, this protocol can be extended from hydroxide anions to other target analytes with appropriate adjustments in the molecular design of the chromogenic ligands. It follows that luminescent chemosensors, based on the unique photophysical properties of semiconductor quantum dots, can eventually evolve from our design logic and choice of materials.  相似文献   

7.
We have carried out a series of ab initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen-passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure and eventually the stability of alkyl-passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affects their excited state properties. On the basis of our results, we propose that alkyl-terminated quantum dots may be size selected, taking advantage of the change in ionization potential as a function of the cluster size.  相似文献   

8.
CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSxSe1-x quantum dots.  相似文献   

9.
pH-sensitive ligand for luminescent quantum dots   总被引:1,自引:0,他引:1  
We developed a strategy to switch the luminescence of semiconductor quantum dots with chemical stimulations. It is based on the photoinduced transfer of either energy from CdSe-ZnS core-shell quantum dots to [1,3]oxazine ligands or electrons from the organic to the inorganic components. The organic ligands incorporate a dithiolane anchoring group, an electron-rich indole, and a 4-nitrophenylazophenoxy chromophore in their molecular skeleton. Their adsorption on the surface of the quantum dots results in partial luminescence quenching. Electron transfer from the indole fragment to the nanoparticles is mainly responsible for the decrease in luminescence intensity. Upon addition of base, the [1,3]oxazine ring of the ligands opens to generate a 4-nitrophenylazophenolate chromophore, which absorbs in the range of wavelengths where the quantum dots emit. This transformation activates an energy-transfer pathway from the excited nanoparticles to the ligands. In addition, the oxidation potential of the ligand shifts in the negative direction, improving the efficiency of electron transfer. The overall result is a decrease in the luminescence quantum yield of 83%. Addition of acid also opens the [1,3]oxazine ring of the ligands. However, the resulting 4-nitrophenylazophenol does not absorb in the visible region and cannot accept energy from the excited nanoparticles. Furthermore, the oxidation potential shifts in the positive direction, lowering the electron-transfer efficiency. In fact, the luminescence quantum yield increases by 33% as a result of this transformation. These changes are fully reversible and can be exploited to probe the pH of aqueous solutions from 3 to 11. Indeed, our sensitive quantum dots adjust their luminescence in response to variations in pH within this particular range of values. Thus, our general design strategy can eventually lead to the development of pH-sensitive luminescent probes for biomedical applications based on the unique photophysical properties of semiconductor quantum dots.  相似文献   

10.
Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.  相似文献   

11.
The application of quantum dots in capillary electrophoresis immunoassay was studied for the first time. Quantum dots were conjugated with antibody and subsequently tested by electrophoretic separation of free antibody and antibody-antigen complex. Antibody was fluorescently labeled by quantum dots via conjugation procedures and its electrophoretic characteristics were effectively modified due to the attachment of quantum dots. The determination of human IgM by direct CE based immunoassay could be easily achieved by simply changing the pH value of separation buffer. Polymer additive influenced the separation too but the effect was not as significant as buffer pH adjustment. Satisfactory separation of complex from free antibody could be achieved with 20mM sodium tetraborate as separation buffer, at pH 9.8. The immunoassay application of quantum dots in CE offers considerable advantages and can be readily applied to other large bio-molecules.  相似文献   

12.
The role of specific interactions between a polymer matrix and incorporated quantum dots is one of the critical problems for understanding the effect of the polymer matrix on the optical properties of quantum dots in a nanocomposite material and for creating new photonic materials and related instruments. In this study, cadmium selenide quantum dots have been incorporated into a liquid-crystalline polymer via the interaction of carboxyl groups of the polymer with the quantum-dot surfaces through ionic bonds. From the data of transmission electron microscopy, it has been shown that this interaction provides the localization of quantum dots in the environment of the liquid-crystalline phase of the polymer. Various features of photoluminescent properties have been observed and interpreted in terms of the emission recombination of excitons in CdSe quantum dots, light reabsorption by quantum dots, the effect of the electronic states on the surface CdSe-liquid crystal, and the energy transfer from quantum dots to the polymer liquid-crystalline matrix.  相似文献   

13.
Water-soluble orthorhombic colloidal SnSe quantum dots with an average diameter of 4 nm were successfully prepared by a novel irradiation route using an electronic accelerator as a radiation source and hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant. The quantum dots exhibit a large direct bandgap of 3.89 eV, greatly blue shifted compared with that of bulk SnSe (1.0 eV) due to the quantum confinement effect. The quantum dots show blue photoluminescence at ∼420 nm. The influence of CTAB on the growth of the quantum dots was investigated and a possible reaction/growth mechanism was proposed.  相似文献   

14.
以柠檬酸三钠为稳定剂在水溶液中合成了水溶性CdSe量子点,用X射线粉末衍射、透射电镜、紫外-可见吸收光谱和荧光发射光谱对CdSe量子点的结构、形貌及其荧光性质进行了表征.结果表明合成的CdSe量子点为立方闪锌矿结构,呈球形,分散性良好,平均尺寸约为2.6nm,具有窄且对称的荧光发射光谱,半峰宽为45nm.  相似文献   

15.
We report a new family of oligomeric alkyl phosphine ligands for nanocrystal quantum dots. These oligomeric phosphines show effective binding affinity to quantum dot surfaces. They form thin and secure organic shells that stabilize quantum dots in diverse environments including serum and polymer matrices. They maintain the initial as-grown photoluminescence quantum yield of the quantum dots and enable homogeneous incorporation into various matrices. They present a chemically flexible structure that can be used for further chemistry, such as cross-linking, copolymerization, and conjugation to biomolecules.  相似文献   

16.
Semiconductor quantum dots are inorganic nanoparticles with unique photophysical properties. In particular, their huge one- and two-photon absorption cross sections, tunable emission bands and excellent photobleaching resistances are stimulating the development of luminescent probes for biomedical imaging and sensing applications. Indeed, electron and energy transfer processes can be designed to switch the luminescence of semiconductor quantum dots in response to molecular recognition events. On the basis of these operating principles, the presence of target analytes can be transduced into detectable luminescence signals. In fact, luminescent chemosensors based on semiconductor quantum dots are starting to be developed to detect small molecules, monitor DNA hybridization, assess protein-ligand complementarities, test enzymatic activity and probe pH distributions. Although fundamental research is still very much needed to understand further the fundamental factors regulating the behavior of these systems and refine their performance, it is becoming apparent that sensitive probes based on semiconductor quantum dots will become invaluable analytical tools for a diversity of applications in biomedical research.  相似文献   

17.
QDs (Semiconductor QDs, CDs, SiQDs, and Pdots) are used in imaging microorganisms including viruses, bacteria, and fungi.  相似文献   

18.
综述了量子点的制备方法以及在分析检测、生物、药学、光电器材、指纹显现等领域的应用.指出量子点是一种新型的荧光纳米材料,因其具有独特的光电性质而引起了广泛的关注;并就它的发展方向及应用前景进行了展望.  相似文献   

19.
A simple procedure for transferring PbS and PbSe quantum dots into water is presented, along with characterization of the resulting water-soluble quantum dots. The external surface of the water-soluble quantum dots include carboxylic groups, which will allow target-specific labeling of cells. As a first example, near-infrared fluorescence imaging of human colon cancer cells is demonstrated using these water-soluble near-infrared fluorophores.  相似文献   

20.
The combination of electrochemistry and spectroscopy has allowed to establish novel charge induced phenomena in colloidal quantum dots thin films, including tuning the optical bandgap, modifying the fluorescence properties, and achieving conductivity. This is a brief review on the topic of charging colloidal quantum dots by electrochemistry. Correspondence: Philippe Guyot-Sionnest, James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号