首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Rosa  G Ricciardi 《Inorganic chemistry》2012,51(18):9833-9845
The methane hydroxylation reaction by a Compound II (Cpd II) mimic PorFe(IV)=O and its hydrosulfide-ligated derivative [Por(SH)Fe(IV)=O](-) is investigated by density functional theory (DFT) calculations on the ground triplet and excited quintet spin-state surfaces. On each spin surface both the σ- and π-channels are explored. H-abstraction is invariably the rate-determining step. In the case of PorFe(IV)=O the H-abstraction reaction can proceed either through the classic π-channel or through the nonclassical σ-channel on the triplet surface, but only through the classic σ-mechanism on the quintet surface. The barrier on the quintet σ-pathway is much lower than on the triplet channels so the quintet surface cuts through the triplet surfaces and a two state reactivity (TSR) mechanism with crossover from the triplet to the quintet surface becomes a plausible scenario for C-H bond activation by PorFe(IV)=O. In the case of the hydrosulfide-ligated complex the H-abstraction follows a π-mechanism on the triplet surface: the σ* is too high in energy to make a σ-attack of the substrate favorable. The σ- and π-channels are both feasible on the quintet surface. As the quintet surface lies above the triplet surface in the entrance channel of the oxidative process and is highly destabilized on both the σ- and π-pathways, the reaction can only proceed on the triplet surface. Insights into the electron transfer process accompanying the H-abstraction reaction are achieved through a detailed electronic structure analysis of the transition state species and the reactant complexes en route to the transition state. It is found that the electron transfer from the substrate σ(CH) into the acceptor orbital of the catalyst, the Fe-O σ* or π*, occurs through a rather complex mechanism that is initiated by a two-orbital four-electron interaction between the σ(CH) and the low-lying, oxygen-rich Fe-O σ-bonding and/or Fe-O π-bonding orbitals of the catalyst.  相似文献   

2.
The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets 3Sigma-(2), 3Sigma+, 3Pi(3), and 3Delta(2) dissociating to Sc(2D)/B(2P) atoms and eight low-lying quintet states 5Sigma-, 5Sigma+, 5Pi(2), 5Phi, and 5Delta(3) dissociating to Sc(4F)/B(2P) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, 3Sigma- and 5Sigma-, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800 cm(-1). Inclusion of scalar relativistic effects reduces this difference to about 240 cm(-1). The dissociation energies for 5Sigma- ScB range from 3.20 to 3.30 eV while those for the 3Sigma- range from 1.70 to 1.80 eV.  相似文献   

3.
Comprehensive density functional theory computations on substrate hydroxylation by a range of nonheme iron(iv)-oxo model systems [Fe(IV)(O)(NH(3))(4)L](+) (where L = CF(3)CO(2)(-), F(-), Cl(-), N(3)(-), NCS(-), NC(-), OH(-)) have been investigated to establish the effects of axial ligands with different degrees of electron donor ability on the reactivity of the distinct reaction channels. The results show that the electron-pushing capability of the axial ligand can exert a considerable influence on the different reaction channels. The σ-pathway reactivity decreases as the electron-donating ability of the axial ligand strengthens, while the π-pathway reactivity follows an opposite trend. Moreover, the apparently antielectrophilic trend observed for the energy gap between the triplet π- and quintet σ-channel (ΔG(T-Q)) stems from the fact that the reaction reactivity can be fine-controlled by the interplay between the exchange-stabilization benefiting from the (5)TS(H) relative to the (3)TS(H) by most nonheme enzymes and the destabilization effect of the orbital by the anionic axial ligand. When the former counteracts the latter, the quintet σ-pathway will be more effective than the other alternatives. Nevertheless, when the dramatic destabilization effect of the orbital by a strong binding axial σ-donor ligand like OH(-) counteracts but does not override the exchange-stabilization, the barrier in the quintet σ-pathway will remain identical to the triplet π-pathway barrier. Indeed, the axial ligand does not change the intrinsic reaction mechanism in its respective pathway; however, it can affect the energy barriers of different reaction channels for C-H activation. As such, the tuning of the reactivity of the different reaction channels can be realised by increasing/decreasing the electron pushing ability.  相似文献   

4.
Spin-forbidden CO binding to the iron–sulfur cluster-free hydrogenase (Hmd) is studied by the DFT calculation. The result shows that the surface of the triplet causes a PHmd–CO minimum and that 3,5MECP is the lowest energy path to PHmd–CO. It is found that this CO binding involves a low barrier of 0.931 kcal/mol because of the need to change from a bound triplet state to the Hmd quintet ground state.  相似文献   

5.
Nb+离子活化甲烷脱氢反应机理密度泛函(DFT)研究   总被引:1,自引:0,他引:1  
通过DFT-UB3LYP方法, 计算了五重、三重和单重自旋态下的气相Nb+离子活化甲烷脱氢反应的能量变化, 并对其直接式和插入式反应机理进行了比较, 考察了自旋翻转对反应的影响. 结果表明, 插入式脱氢较直接式有利, CH4上的H转移到Nb+上形成的中间体HNbCH+3中, 多重度由五重降为三重, 反应活化能垒显著降低; HNbCH+3可经四中心过渡态转化为(H2)NbCH+2, 最后生成三重态的NbCH+2+H2. 速控步骤为(H2)NbCH+2的脱氢. 此外, 通过对V+, Nb+, Ta+活化甲烷的比较研究了三者活化甲烷的反应活性.  相似文献   

6.
7.
This paper addresses the observation of counterintuitive reactivity patterns of iron-oxo reagents, TMC(L)FeO(2+,1+); L=CH(3)CN, CF(3)CO(2) (-), N(3) (-), and SR(-), in O-transfer to phosphines versus H-abstraction from, for example, 1,4-cyclohexadiene. Experiments show that O-transfer reactivity correlates with the electrophilicity of the oxidant, but H-abstraction reactivity follows an opposite trend. DFT/B3 LYP calculations reveal that two-state reactivity (TSR) serves as a compelling rationale for these trends, whereby all reactions involve two adjacent spin-states of the iron(IV)-oxo species, triplet and quintet. The ground state triplet surface has high barriers, whereas the excited state quintet surface features lower ones. The barriers, on any single surface, are found to increase as the electrophilicity of TMC(L)FeO(2+,1+) decreases. Thus, the counterintuitive behavior of the H-abstraction reactions cannot be explained by considering the reactivity of only a single spin state but can be rationalized by a TSR model in which the reactions proceed on the two surfaces. Two TSR models are outlined: one is traditional involving a variable transmission coefficient for crossover from triplet to quintet, followed by quintet-state reactions; the other considers the net barrier as a blend of the triplet and quintet barriers. The blending coefficient (x), which estimates the triplet participation, increases as the quintet-triplet energy gap of the TMC(L)FeO(2+,1+) reagent increases, in the following order of L: CH(3)CN > CF(3)CO(2) (-) > N(3) (-) > SR(-). The calculated barriers predict the dichotomic experimental trends and the counterintuitive behavior of the H-abstraction series. The TSR approaches make a variety of testable predictions.  相似文献   

8.
基于四价非血红素铁模型配合物[FeⅣ(O)(N4Py)]2+, 通过理论计算设计出一种新型N杂环卡宾配合物[FeⅣ(O)(N4Py)]2+. 采用密度泛函理论B3LYP方法, 计算了[FeⅣ(O)(N4Py)]2+的几何结构和电子结构, 并研究了[FeⅣ(O)(N4Py)]2+使环己烷C-H键羟基化的反应机理. 结果表明, [FeⅣ(O)(N4Py)]2+的五重态能量比基态三重态能量高约5.7 kJ/mol, 故五重态几乎不能参与反应. 赤道方向的配位基N杂环卡宾(NHC)对FeO单元的σ-贡献要大于N4Py的贡献, 而它的空间位阻效应也大于N4Py, 因此2+的稳定性强于[FeⅣ(O)(N4Py)]2+. [FeⅣ(O)(N4Py)]2+的三重态的反应能垒比[FeⅣ(O)(N4Py)]2+的三重态反应能垒高2.0 kJ/mol, 且为单态反应, 所以[FeⅣ(O)(N4Py)]2+的反应活性要高于[FeⅣ(O)(N4Py)]2+.  相似文献   

9.
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].  相似文献   

10.
Spin-inversion mechanisms in O2 binding to a model heme complex, consisting of Fe(II)-porphyrin and imidazole, were investigated using density-functional theory calculations. First, we applied the recently proposed mixed-spin Hamiltonian method to locate spin-inversion structures between different total spin multiplicities. Nine spin-inversion structures were successfully optimized for the singlet–triplet, singlet–quintet, triplet–quintet, and quintet–septet spin-inversion processes. We found that the singlet–triplet spin-inversion points are located around the potential energy surface region at short Fe–O distances, whereas the singlet–quintet and quintet–septet spin-inversion points are located at longer Fe–O distances. This suggests that both narrow and broad crossing models play roles in O2 binding to the Fe-porphyrin complex. To further understand spin-inversion mechanisms, we performed on-the-fly Born-Oppenheimer molecular dynamics calculations. The reaction coordinates, which are correlated to the spin-inversion dynamics between different spin multiplicities, are also discussed.  相似文献   

11.
The reaction mechanism of the ruthenium--porhyrin complex [Ru(por)(CO)]-catalyzed intramolecular C-H bond amidation was examined using density functional theory (DFT) calculations. The metal-nitrene reactive intermediate, Ru(por)(CO)-NSO3R1 (R1 = 1-methylclohexl-methyl) was found to be highly favorable to generate in terms of the free energy profile from the reaction of the starting materials. Ru(por)(CO)-NSO3R1 may exist in both singlet and triplet states since they are close in energy. In each state, six C-H bond amidation reaction pathways were characterized structurally and energetically. The predicted most probable diastereomeric product out of the four possible diasteromeric products examined in the calculations for the amidation reactions agree well with previously reported experimental results.  相似文献   

12.
The singlet and triplet potential energy surfaces (PESs) for the gas-phase bimolecular self-reaction of HOO*, a key reaction in atmospheric environments, have been investigated by means of quantum-mechanical electronic structure methods (CASSCF and CASPT2). All the reaction pathways on both PESs consist of a first step involving the barrierless formation of a prereactive doubly hydrogen-bonded complex, which is a diradical species lying about 8 kcal/mol below the energy of the reactants at 0 K. The lowest energy reaction pathway on both PESs is the degenerate double hydrogen exchange between the HOO* moieties of the prereactive complex via a double proton transfer mechanism involving an energy barrier of only 1.1 kcal/mol for the singlet and 3.3 kcal/mol for the triplet at 0 K. The single H-atom transfer between the two HOO* moieties of the prereactive complex (yielding HOOH + O2) through a pathway keeping a planar arrangement of the six atoms involves a conical intersection between either two singlet or two triplet states of A' and A" symmetries. Thus, the lowest energy reaction pathway occurs via a nonplanar cisoid transition structure with an energy barrier of 5.8 kcal/mol for the triplet and 17.5 kcal/mol for the singlet at 0 K. The simple addition between the terminal oxygen atoms of the two HOO* moieties of the prereactive complex, leading to the straight chain H2O4 intermediate on the singlet PES, involves an energy barrier of 7.3 kcal/mol at 0 K. Because the decomposition of such an intermediate into HOOH + O2 entails an energy barrier of 45.2 kcal/mol at 0 K, it is concluded that the single H-atom transfer on the triplet PES is the dominant pathway leading to HOOH + O2. Finally, the strong negative temperature dependence of the rate constant observed for this reaction is attributed to the reversible formation of the prereactive complex in the entrance channel rather than to a short-lived tetraoxide intermediate.  相似文献   

13.
Both the singlet(1A') and triplet(3A') potential energy surfaces (PESs) of F+N(3) reactions are investigated using the complete-active-space self-consistent field (CASSCF) and the multireference configuration interaction (MRCI) methods with a proper active space. The minimum energy crossing point (MECP) at the intersection seam between the 1A' and 3A' PESs is located and used to clarify the reaction mechanisms. Two triplet transition states are found, with one in the cis form and the other one in the trans form. Further kinetic calculations are performed with the canonical unified statistical (CUS) theory on the singlet PES and the improved canonical variational transition-state (ICVT) method on the triplet PES. The rate constants are also reported. At 298 K, the calculated rate constant is in reasonably good agreement with experimental values, and spin-orbit coupling effects lower it by 28 %. The spectroscopic constants derived from the fitted potential-energy curves for the singlet and triplet states of NF are in very good agreement with experimental values. Our calculations indicate that the adiabatic reaction on the singlet PES leading to NF(a(1)Delta)+N(2) is the major channel, whereas the nonadiabatic reaction through the MECP, which leads to NF(X(3)Sigma(-))+N(2), is a minor channel.  相似文献   

14.
The dynamics of O((3)P) + CO(2) collisions at hyperthermal energies were investigated experimentally and theoretically. Crossed-molecular-beams experiments at = 98.8 kcal mol(-1) were performed with isotopically labeled (12)C(18)O(2) to distinguish products of nonreactive scattering from those of reactive scattering. The following product channels were observed: elastic and inelastic scattering ((16)O((3)P) + (12)C(18)O(2)), isotope exchange ((18)O + (16)O(12)C(18)O), and oxygen-atom abstraction ((18)O(16)O + (12)C(18)O). Stationary points on the two lowest triplet potential energy surfaces of the O((3)P) + CO(2) system were characterized at the CCSD(T)/aug-cc-pVTZ level of theory and by means of W4 theory, which represents an approximation to the relativistic basis set limit, full-configuration-interaction (FCI) energy. The calculations predict a planar CO(3)(C(2v), (3)A') intermediate that lies 16.3 kcal mol(-1) (W4 FCI excluding zero point energy) above reactants and is approached by a C(2v) transition state with energy 24.08 kcal mol(-1). Quasi-classical trajectory (QCT) calculations with collision energies in the range 23-150 kcal mol(-1) were performed at the B3LYP/6-311G(d) and BMK/6-311G(d) levels. Both reactive channels observed in the experiment were predicted by these calculations. In the isotope exchange reaction, the experimental center-of-mass (c.m.) angular distribution, T(θ(c.m.)), of the (16)O(12)C(18)O products peaked along the initial CO(2) direction (backward relative to the direction of the reagent O atoms), with a smaller isotropic component. The product translational energy distribution, P(E(T)), had a relatively low average of = 35 kcal mol(-1), indicating that the (16)O(12)C(18)O products were formed with substantial internal energy. The QCT calculations give c.m. P(E(T)) and T(θ(c.m.)) distributions and a relative product yield that agree qualitatively with the experimental results, and the trajectories indicate that exchange occurs through a short-lived CO(3)* intermediate. A low yield for the abstraction reaction was seen in both the experiment and the theory. Experimentally, a fast and weak (16)O(18)O product signal from an abstraction reaction was observed, which could only be detected in the forward direction. A small number of QCT trajectories leading to abstraction were observed to occur primarily via a transient CO(3) intermediate, albeit only at high collision energies (149 kcal mol(-1)). The oxygen isotope exchange mechanism for CO(2) in collisions with ground state O atoms is a newly discovered pathway through which oxygen isotopes may be cycled in the upper atmosphere, where O((3)P) atoms with hyperthermal translational energies can be generated by photodissociation of O(3) and O(2).  相似文献   

15.
梁湦  何秋月  孙宝珍 《分子催化》2017,31(6):553-566
采用密度泛函理论结合周期平板模型方法系统地研究了水煤气变换反应在Cu_2O(111)表面上的反应机理,包括氧化还原机理、羧基机理和甲酸根机理.结果表明,在Cu_2O(111)表面,羧基机理和甲酸根机理均可行,且甲酸根机理更为有利,其最佳反应途径为H_2O~*→H~*+OH~*;CO(g)+H~*+OH~*→trans-HCOOH~*(1)→cis-HCOOH~*→CO_2~*+H_2(g).其中trans-HCOOH~*(1)→cis-HCOOH~*为其决速步,该基元反应的能垒仅为59 kJ·mol~(-1).羧基机理的最优反应路径同样是以H_2O的解离反应开始,随后CO(g)+OH~*→cis-COOH~*→trans-COOH~*→CO_2(g)+H~*,最后产生的两个吸附的H原子先迁移再结合生成H_2,整个反应的控速步骤为H原子的迁移,迁移能垒为96 kJ·mol~(-1).氧化还原机理则由于OH解离需要越过一个很高的能垒(254 vs.187 kJ·mol~(-1))而不可行.  相似文献   

16.
采用密度泛函UB3LYP方法和Stuttgart赝势基组, 计算研究了气相中循环催化N2O +CO →N2 +CO2 反应的微观机理. 通过对相关物种亲氧性的计算, 证明了Ir+循环催化作用在热力学上是可行的. 不同自旋态反应势能面的计算结果表明, 循环催化的两步反应均为自旋禁阻反应, 各存在不同自旋态势能面的交叉, 并运用Yoshizawa的内禀坐标单点垂直激发计算的方法找出了势能面交叉点; 两步反应均为放热反应, 总放热量为358.9 kJ•mol-1.  相似文献   

17.
Structural properties of the acylperoxo complexes [(Salen)Mn(III)RCO(3)] (2) and [(Salen)Mn(IV)RCO(3)] (3), the critical intermediates in the Kochi-Jacobsen-Katsuki reaction utilizing organic peracids or O(2)/aldehydes as oxygen source, have been studied with the density functional theory. Four distinct isomers, cis(O,N), cis(N,O), cis(N,N), and trans, of these complexes have been located. The isomer 2-cis(O,N) in its quintet ground state, and nearly degenerate isomers 3-cis(O,N) and 3-cis(N,O) in their quartet ground states are found to be the lowest in energy among the other isomers. The O-O bond cleavage in the cis(O,N), cis(N,O), and trans isomers of 2 and 3 has been elucidated. In complex 3, the O-O bond is inert. On the contrary, in complex 2, the O-O bond cleaves via two distinct pathways. The first pathway occurs exclusively on the quintet potential energy surface (PES) and corresponds to heterolytic O-O bond scission coupled with insertion of an oxygen atom into an Mn-N(Salen) bond to form 2-N-oxo species; this pathway has the lowest barrier of 14.9 kcal/mol and is 15.6 kcal/mol exothermic. The second pathway is tentatively a spin crossover pathway. In particular, for 2-cis(O,N) and 2-cis(N,O) the second pathway proceeds through a crucial minimum on the seam of crossing (MSX) between the quintet and triplet PESs followed by heterolytic O-O cleavage on the triplet PES, and produces unusual triplet 2-cis(O,N)- and 2-cis(N,O)-oxo ([(Salen)Mn(V)(O)RCO(2)]) species; this pathway requires 12.8 kcal/mol and is 1.4 kcal/mol endothermic. In contrast, for the 2-trans isomer, spin crossing is less crucial and the O-O cleavage proceeds homolytically to generate 2-trans-oxo [(Salen)Mn(IV)(O)] species with RCO(2) radical; this pathway, however, cannot compete with that in 2-cis because it needs 21.9 kcal/mol for activation and is 15.3 kcal/mol endothermic. In summary, the O-O cleavage occurs predominantly in the 2-cis complexes, and may proceed either through pure high spin or spin crossover heterolytic pathway to produce 2-cis-oxo and 2-N-oxo species.  相似文献   

18.
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.  相似文献   

19.
The O(3P) + C2H2 reaction plays an important role in hydrocarbon combustion. It has two primary competing channels: H + HCCO (ketenyl) and CO + CH2 (triplet methylene). To further understand the microscopic dynamic mechanism of this reaction, we report here a detailed quasi-classical trajectory study of the O(3P) + C2H2 reaction on the recently developed full-dimensional potential energy surface (PES). The entrance barrier TS1 is the rate-limiting barrier in the reaction. The translation of reactants can greatly promote reactivity, due to strong coupling with the reaction coordinate at TS1. The O(3P) + C2H2 reaction progress through a complex-forming mechanism, in which the intermediate HCCHO lives at least through the duration of a rotational period. The energy redistribution takes place during the creation of the long-lived high vibrationally (and rotationally) excited HCCHO in the reaction. The product energy partitioning of the two channels and CO vibrational distributions agree with experimental data, and the vibrational state distributions of all modes of products present a Boltzmann-like distribution.  相似文献   

20.
Singlet and triplet free energy surfaces for the reactions of C atom ((3)P and (1)D) with CH(2)O are studied computationally to evaluate the excited singlet ((1)B(1)) methylene formation from deoxygenation of CH(2)O by C ((1)D) atom as suggested by Shevlin et al. Carbon atoms can react by addition to the oxygen lone pair or to the C=O double bond on both the triplet and singlet surfaces. Triplet C ((3)P) atoms will deoxygenate to give CO plus CH(2) ((3)B(1)) as the major products, while singlet C ((1)D) reactions will form ketene and CO plus CH(2) ((1)A(1)). No definitive evidence of the formation of excited singlet ((1)B(1)) methylene was found on the singlet free energy surface. A conical intersection between the (1)A' and (1)A' ' surfaces located near an exit channel may play a role in product formation. The suggested (1)B(1) state of methylene may form via the (1)A' ' surface only if dynamic effects are important. In an effort to interpret experimental observation of products trapped by (Z)-2-butene, formation of cis- and trans-1,2-dimethylcyclopropane is studied computationally. The results suggests that "hot" ketene may react with (Z)-2-butene nonstereospecifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号