首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Au-containing polymer films were obtained by electroless deposition of gold from diluted solutions of HAuCl4 into preliminarily reduced poly-3,4-ethylenedioxythiophene (PEDOT) films. Structural peculiarities of such pristine and composite films were characterized by scanning and transmission electron microscopy methods. It was established that the gold clusters forming under such deposition appear on the outer surface of polymer films and their pores. The clusters’ sizes ranged between 30 and 100 nm depending on the time of exposition of a PEDOT film in solutions of Au(III) ions and the concentration of these ions. It was also observed that in contrast to pristine PEDOT films, cyclic voltammograms (CVs) of composite films in the presence of chloride ions show additional redox peaks resulting from oxidation of gold with formation of an insoluble product and followed by the product reduction under reversal of the potential scan direction. As a result of parallel electrochemical quartz crystal microbalance (EQCM) and CV measurements, it was also established that the number of chloride ions per one transferring electron in the gold oxidation process is near to unity. To elucidate the oxidation degree of gold in the presence of chloride ions, a special procedure of changing the electrode potential was used. It consisted of clamping the high anodic potential in the region of gold oxidation (0.97 V, Ag/AgCl) and subsequent gradual decrease of the electrode potential with a constant scan rate. Under these conditions, it was possible to completely oxidize all the gold particles containing in a composite film and find out the maximum amount of electricity consumed for the product particles’ reduction. A comparison between such data and the results obtained in EQCM determinations of the gold content in the same film led to the conclusion that the oxidation state of gold in the complexes formed is Au(III). The effects of chloride ion concentration and scan rate of the electrode potential on current responses of PEDOT–Au films were investigated. Some primary conclusions on the kinetics of the studied processes are made.  相似文献   

2.
Composite poly-3,4-ethylenedioxythiophene (PEDOT)/palladium (Pd) films were obtained by chemical deposition of dispersed palladium nanoparticles into PEDOT conducting polymer matrix. The amounts of palladium particles incorporated into PEDOT films were estimated by electrochemical quartz crystal microbalance measurements. It was shown that palladium loading depends on the time a PEDOT film is exposed in the solution, containing Pd(II)-ions, on the concentration of Pd(II) ions and the film thickness. X-ray photoelectron spectroscopy data have confirmed the presence of metallic palladium in the polymer. The morphology of pristine and composite films as well as the size of Pd nanoparticles and their distribution were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From SEM images, it was found that Pd particles decorated PEDOT globular structures as quasi-spherical particles, and their mean size was dependent on synthesis conditions. The nanoparticles were non-uniformly dispersed on the polymer surface. The comparison of TEM images of composite PEDOT/Pd films obtained for different times of metal loading was made. The remarkable effect of loading time on the size of particles has been established: the mean size of dominating palladium particles was close to 6–10 nm for 30 s of metal deposition, and it was getting larger with the increase of deposition time (close to 15–30 nm for 120 s). It is most likely that with prolongation of synthesis time, the deposition of palladium predominantly proceeds on the already deposited palladium clusters, resulting in the extension growth of their size. Catalytic properties of PEDOT/Pd composite films were studied in respect to hydrazine oxidation by cyclic voltammetry and voltammetry on rotating disk electrode. The obtained data allow to conclude that the process of hydrazine oxidation on PEDOT/Pd composites takes place predominantly on palladium particles, located on the surface or in the near-surface layers of the polymer. The diffusion nature of the limiting current of hydrazine oxidation on composite PEDOT/Pd film in phosphate buffer solution рН = 6.86 was confirmed, and hydrazine diffusion coefficient was calculated. The increase of the limiting currents of hydrazine oxidation with the increase of Pd deposition time was observed, resulting from the increase of the active surface area of palladium particles, acting as microelectrodes. The electroanalytical applications of these nanocomposite materials for the determination of hydrazine were demonstrated.  相似文献   

3.
The electrochemical behavior of PEDOT/Ag composite films obtained by chemical deposition of ultrafine Ag particles into the poly-3,4-ethylenedioxythiophene (PEDOT) matrix was studied. The film morphology was characterized by transmission electron microscopy (TEM). The changes in the mass of the films during the chemical deposition of silver into the polymer structure were evaluated microgravimetrically. The mass of the included metallic silver particles depends on the synthesis time and the initial concentration of silver ions in solution. The cyclic voltammograms (CVs) of PEDOT/Ag films in sodium nitrate solutions and sodium nitrate solutions with additions of chloride ions were studied. The cyclic voltammograms of PEDOT/Ag films in chloride-containing solutions showed the peaks of the oxidation of silver and reduction of the oxidation product, which were absent on the CVs of the starting PEDOT film.  相似文献   

4.
By chemical deposition of ultrafine particles of metallic palladium on the polymer matrix of poly-3,4-ethylenedioxythiophene (PEDOT) composite PEDOT/Pd films were obtained. The conditions of synthesis of the composite films in dependence on the duration of exposure of the reduced form of PEDOT film in a solution of palladium chloride, its concentration and the film thickness were studied. By the methods of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) it was shown that in the process of the synthesis of the composite films the nanosized palladium particles of predominantly quasispherical shape precipitated on the globular structure of the polymer. The size of the palladium nanoparticles in the composite PEDOT film and the nature of their distribution over the film bulk were revealed. An increase in the duration of deposition of the palladium nanoparticles on the film was shown to lead to an increase in their size and in the density of particles in the film.  相似文献   

5.
The electrochemical behavior of composite Pd-PEDOT films is studied. These films are obtained by chemical deposition of Pd particles in the polymeric matrix of PEDOT (poly-3,4-ethylenedioxythiophene). Characteristics of the films are determined by means of cyclic voltammetry, faradaic impedance, microgravimetry, and energy-dispersive x-ray fluorescence analysis. Impedance spectra of composite Pd-PEDOT films, compared to the original PEDOT film, reveal a new response at potentials of −0.3 and −0.4 V in the form of a distinct semicircle, which results from processes in the electrochemical sorption-desorption of hydrogen. Weight gain during the chemical deposition of palladium in the polymer structure is estimated by mircrogravimetry. It is shown that the mass of palladium loaded in the film depends on the time of synthesis and the initial concentration of palladium ions in solution. The size of the actual surface and the average radius of dispersed palladium particles in the film are also estimated.  相似文献   

6.
Graphite-supported polyaniline films (PANI) containing rhodium particles were obtained by two procedures: metal electrodeposition on a prepared PANI film and electropolymerization. The adsorption/desorption and electrowinning of hydrogen on these films were observed for both types of synthesized composite films. PANI/Au composites were synthesized using the PANI films deposited onto a gold electrode. High anode potentials were further applied to the electrode in the presence of chloride ions, leading to a dissolution of gold and its transfer to the films during subsequent electroreduction. The amounts of the chloride complexes of gold formed in this procedure were determined by cyclic voltammetry of their electroreduction.  相似文献   

7.
Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO(4) and the bacteriophage M13. The concentration of virus in these solutions, [virus](soln), is varied from 3 to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that the concentration of the M13 within the electropolymerized film, [virus](film), increases linearly with [virus](soln). The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio of [virus](film):[virus](soln) ≈ 450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PEDOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films.  相似文献   

8.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

9.
Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.  相似文献   

10.
Poly(3,4-ethylenedioxythiopene) (PEDOT) films, due to their porous and open structure, as well as high stability, were chosen as a membrane for incorporation of Ni(II) ion complexes with 1,4,8,11-tetraazacyclotetradecane (cyclam) or deposition of electroactive films containing polymerized complex. Accumulation of the complex in PEDOT layers and its electrocatalytic activity was studied basing on voltammetric behavior of Ni(II)?Ccyclam and electroxidation of a model reactant-methanol in alkaline solutions. Several modes of complex incorporation were tested, based on open circuit conditioning or polarization in the presence of nickel ions and cyclam. It was found that the most effective method was incorporation of cyclam in the course of PEDOT electrosynthesis, followed by potentiostatic accumulation of Ni(II) ions. This procedure resulted in around 50 times higher slope of dependence of methanol oxidation current on alcohol concentration than in the absence of PEDOT.  相似文献   

11.
In this work, we report an unexpected but significant improvement of the redox behavior of conducting polyaniline (PAN) films by trapping intrinsically nonconducting poly(vinyl alcohol) (PVA) in the matrix of the polymer acting as stiffening and/or cross-linking agents. Film structural stiffening of PAN/PVA inclusion was studied in relation to film compositional dynamics. PAN and PAN/PVA composite films were potentiodynamically deposited using high-frequency electrochemical quartz crystal microbalance under electrochemical potentiodynamic control. From the simultaneously obtained measurements of nanogravimetric and cyclic voltammetric data, it has been found that the presence of PVA in the deposition solution increased the rate of PAN film growth as a function of PVA concentration. Characterization of the resultant composite films in monomer-free acidic electrolyte solutions showed significantly enhanced redox behavior of PAN/PVA composite films (with different PVA contents) compared to pure PAN by a factor of ~2–4. For the study of structure–composition relationships of composite polymer films, fluxes of instantaneous mobile species dynamics (ion/solvent) as a function of film redox conversion and potential cycling were correlated with film structural stiffening and the observed unusual redox enhancement of PAN/PVA composite films. Using various experimental timescales, we were able to resolve bound (associated with ion transfer) and free solvent compositional dynamics (associated with thermodynamic activity balance).  相似文献   

12.

Poly(3,4-ethylenedioxythiopene) (PEDOT) films, due to their porous and open structure, as well as high stability, were chosen as a membrane for incorporation of Ni(II) ion complexes with 1,4,8,11-tetraazacyclotetradecane (cyclam) or deposition of electroactive films containing polymerized complex. Accumulation of the complex in PEDOT layers and its electrocatalytic activity was studied basing on voltammetric behavior of Ni(II)–cyclam and electroxidation of a model reactant-methanol in alkaline solutions. Several modes of complex incorporation were tested, based on open circuit conditioning or polarization in the presence of nickel ions and cyclam. It was found that the most effective method was incorporation of cyclam in the course of PEDOT electrosynthesis, followed by potentiostatic accumulation of Ni(II) ions. This procedure resulted in around 50 times higher slope of dependence of methanol oxidation current on alcohol concentration than in the absence of PEDOT.

  相似文献   

13.
The electrochemical behavior of PEDOT/Pd composite films obtained by the chemical deposition of ultradisperse Pd particles in the poly-3,4-ethylenedioxythiophene (PEDOT) polymer matrix was studied. The structure of the films was determined by electron microscopy and energy-dispersion X-ray fluorescence analysis. The electrochemical properties of PEDOT/Pd composite films in solutions containing hydrogen peroxide was also studied. Special attention was paid to the effect of the time of the chemical deposition of palladium in the polymer structure on the electroreduction of hydrogen peroxide in phosphate buffer solutions.  相似文献   

14.
Zhao G  Chan H  Li SF 《Talanta》1998,45(4):721-726
A quartz crystal microbalance (QCM) sensor system was employed to investigate the properties of Nafion films on a gold surface supported on a quartz-crystal as a function of the water content in the deposition solutions (0.5% Nafion in mixed ethanol/water). The rates of loading and unloading of the complex ion Ru(bpy)(3)(2+) through Nafion films were measured. A linear dependence of the frequency changes on the percentage of water in the deposition solution was observed for both loading and unloading. The ion-exchange distribution coefficients for Nafion films from various deposition solutions were calculated. We concluded that films cast from solutions of higher water content had more ;open' structures which allowed faster diffusion of ions. This conclusion was further supported by the results of SEM experiments.  相似文献   

15.
Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Γ) of PMG to ≈396%, and increases the electron transfer rate constant (ks) to ≈305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa = 609, 614 and 602 mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92 μA mM−1 cm−2 respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.  相似文献   

16.
Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g?1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g?1.  相似文献   

17.
Electropolymerization, morphology characterization, and ion transport of poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with different counterions (chloride, ferrocyanide (FCN), and poly(p-styrenesulfonate) (PSS-)) on a platinum electrode were investigated using scanning electrochemical microscopy (SECM) during both potential step (chronocoulometric) and cyclic voltammetric scans. An ultramicroelectrode (UME) tip was positioned close to the surface of a PEDOT-modified substrate electrode, and the responses of both electrodes to a substrate potential step or linear sweep were monitored simultaneously. Chloride or ferrocyanide (FCN) ejection during PEDOT reduction was shown to be a function of the reduction potential. The nature of the cation in the bulk solution was not found to be important in the kinetics of ion transport in PEDOT+/FCN- films. Direct evidence for the incorporation of cations of Ru(NH3)6(3+/2+) in a PEDOT film during its reduction was also obtained by SECM measurements. The adsorption of Ru(NH3)6(3+) in fully oxidized PEDOT+/PSS- films was observed and attributed to ion exchange between the Na+ co-ion of PSS- and Ru(NH3)6(3+) in the bulk solution.  相似文献   

18.
Composite PEDOT/Au films were obtained by chemical deposition of dispersed gold nanoparticles into PEDOT (poly-3,4-ethylenedioxythiophene) conducting polymer matrix. Morphology of the obtained gold-containing films was studied by SEM and TEM methods. To study the kinetics of the hydrogen peroxide electroreduction that proceeds on glassy carbon electrodes modified with such films, we used phosphate buffer solutions containing addenda of hydrogen peroxide species. It was observed that the electroreduction process takes place on both the gold clusters?? surface and the film surface free of metal inclusions. The rate of the process is higher in the first case and rises with increasing the gold content in modifying films, but in the limit of large gold contents it is limited only by diffusion of hydrogen peroxide species in the bathing solution. A simple theory of such parallel electroreduction is proposed, which appears to allow for quantitative treatment of the obtained results.  相似文献   

19.
The possibility of incorporation of 4-(pyrrole-1-yl) benzoic acid, PyBA, during electrodeposition of poly(3,4-ethylenedioxythiophene), PEDOT, is demonstrated here. The resulting novel composite material has been fabricated as moderately thin (ca 200–300 nm thick) PEDOT/PyBA film on electrode surface. As evidenced from scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), morphology of the composite film is dense and granular, and it is composed of larger granules in comparison to the PyBA-free PEDOT film. It is apparent from infrared reflectance absorption spectroscopy and spectroelectrochemical measurements that the PEDOT/PyBA composite film cannot be viewed as simple mixtures of PEDOT and PyBA components. Some specific (chemical) interactions between PEDOT and PyBA can be expected. The conducting polymer serves as a robust, positively charged conductive polmer matrix for anionic (carboxylate-group derivatized) partially polymerized PyBA structures. Upon incorporation of PyBA, the overall stability of PEDOT film (resistance to dissolution during prolonged voltammetric potential cycling) has been improved. The fact, that the composite PEDOT/PyBA film is capable of preconcentrating (under open circuit conditions) both cations (Cu2+) or anions implies the presence of both free (available for binding) carboxylate groups and positively charged PEDOT sites. The presence of PyBA in PEDOT seems to facilitate charge propagation in the composite film. “Contribution to the International Workshop on Electrochemistry of Electroactive Materials (WEEM-2006), Repino, Russia, 24–29 June 2006”.  相似文献   

20.
Noncharged pyrene molecules were incorporated into multilayer films by first loading pyrene into poly(acrylic acid) (PAA)-stabilized cetyltrimethylammonium bromide (CTAB) micelles (noted as PAA&(Py@CTAB)) and then layer-by-layer (LbL) assembled with poly(diallyldimethylammonium chloride) (PDDA). The stable incorporation of pyrene into multilayer films was confirmed by quartz crystal microbalance (QCM) measurements and UV-vis absorption spectroscopy. The resultant PAA&(Py@CTAB)/PDDA multilayer films show an exponential growth behavior because of the increased surface roughness with increasing number of film deposition cycles. The present study will open a general and cost-effective avenue for the incorporation of noncharged species, such as organic molecules, nanoparticles, and so forth, into LbL-assembled multilayer films by using polyelectrolyte-stabilized surfactant micelles as carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号