首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption and emission behavior of flavin mononucleotide (FMN) in the light-, oxygen- and voltage-sensitive (LOV) domain LOV1 of the photoreceptor Phot1 from the green alga Chlamydomonas reinhardtii was studied. The results from the wild-type (LOV1-WT) were compared with those from a mutant in which cysteine 57 was replaced by serine (LOV1-C57S), and with free FMN in aqueous solution. A fluorescence quantum yield of phi(F) = 0.30 and a fluorescence lifetime of tau(F) = 4.6 ns were determined for FMN in the mutant LOV1-C57S, whereas these quantities are reduced to about phi(F) = 0.17 and tau(F) = 2.9 ns for LOV1-WT, indicating an enhanced intersystem crossing in LOV1-WT because of the adjacent sulfur of C57. A single-exponential fluorescence decay was observed in picosecond laser time-resolved fluorescence measurements for both LOV1-WT and LOV1-C57S as expected for excited singlet state relaxation by intersystem crossing and internal conversion. An excitation intensity dependent fluorescence signal saturation was observed in steady-state fluorescence measurements for LOV1-WT, which is thought to be because of the formation of a long-lived intermediate flavin-C(4a)-cysteinyl adduct in the triplet state (few microseconds triplet lifetime, adduct lifetime around 150 s). No photobleaching was observed for LOV1-C57S, because no thiol group is present in the vicinity of FMN for an adduct formation.  相似文献   

2.
In LOV2, the blue-light sensitive domain of phototropin, the primary photophysical event involves intersystem crossing (ISC) from the singlet-excited state to the triplet state. The ISC rate is enhanced in LOV2 as compared to flavin mononucleotide (FMN) in solution, which likely results from a heavy-atom effect of a nearby conserved cysteine, C450. Here, we applied fluorescence line narrowing (FLN), resonance Raman (RR) and Fourier-transform infrared (FTIR) spectroscopy to investigate the electronic structure of FMN bound to Avena sativa LOV2 (AsLOV2), its C450A mutant and Adiantum LOV2 (Phy3LOV2). We demonstrate that FLN is the method of choice to obtain accurate vibrational spectra on highly fluorescent flavoproteins. The vibrational spectrum of AsLOV2-C450A showed small but significant shifts with respect to those of wild type AsLOV2 and Phy3LOV2, with a systematic down-shift of Ring I vibrations, upshifts of Ring II and III vibrations and an upshift of the C2=O mode. These trends are similar to those in FMN model systems with an electron-donating group substituted at Ring I, known to induce a quinoid character to the electronic structure of oxidized flavin. Thus, enhancement of the ISC rate in LOV2 is induced through weak electron donation by the cysteine which mixes the FMN pi-electrons with the heavy sulfur orbitals, manifesting itself in a quinoid character of the ground electronic state of oxidized FMN. The proximity of the cysteine to FMN thus not only enables formation of a covalent adduct between FMN and cysteine, but also facilitates the rapid electronic formation of the reactive FMN triplet state.  相似文献   

3.
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.  相似文献   

4.
Phototropin is a blue-light receptor involved in the phototropic response of higher plants. The photoreceptor comprises a protein kinase domain and two structurally similar flavin-mononucleotide (FMN) binding domains designated LOV1 and LOV2. Blue-light irradiation of recombinant LOV2 domains induces the formation of a covalent adduct of the thiol group of a functional cysteine in the cofactor-binding pocket to C(4a) of the FMN. Cysteine-to-alanine mutants of LOV domains are unable to form that adduct but generate an FMN radical upon illumination. The recombinant C450A mutant of the LOV2 domain of Avena sativa phototropin was reconstituted with universally and site-selectively (13)C-labeled FMN and the (13)C NMR signals were unequivocally assigned. (13)C NMR spectra were acquired in darkness and under blue-light irradiation. The chemical shifts and the coupling patterns of the signals were not affected by irradiation. However, under blue-light exposure, exceptionally strong nuclear-spin polarization was developed in the resonances belonging to certain carbons of the FMN's isoalloxazine moiety. An enhancement of the NMR absorption was observed for the signals of C(5a), C(7), and C(9). NMR lines in emission were detected for the signals belonging to C(2), C(4), C(4a), C(6), C(8), and C(9a). The signal of C(10a) remained in absorption but was slightly attenuated. In contrast, the intensities of the NMR signals belonging to the carbons of the ribityl side chain of FMN were not affected by light. The observation of spin-polarized (13)C-nuclei in the NMR spectra of the mutant LOV2 domain is clear evidence for radical-pair intermediates in the reaction steps following optical sample excitation.  相似文献   

5.
The phototropins are blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine in light, oxygen or voltage (LOV) domains. The primary reactions of the Avena sativa phototropin 1 LOV2 domain were investigated by means of time-resolved and low-temperature fluorescence spectroscopy. Synchroscan streak camera experiments revealed a fluorescence lifetime of 2.2 ns in LOV2. A weak long-lived component with emission intensity from 600 to 650 nm was assigned to phosphorescence from the reactive FMN triplet state. This observation allowed determination of the LOV2 triplet state energy level at physiological temperature at 16600 cm(-1). FMN dissolved in aqueous solution showed pH-dependent fluorescence lifetimes of 2.7 ns at pH 2 and 3.9-4.1 ns at pH 3-8. Here, too, a weak phosphorescence band was observed. The fluorescence quantum yield of LOV2 increased from 0.13 to 0.41 upon cooling the sample from 293 to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K in the steady-state emission.  相似文献   

6.
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.  相似文献   

7.
Phototropins are UV-A/blue light photoreceptors containing two flavin mononucleotide (FMN)-binding domains, light, oxygen and voltage (LOV)1 and LOV2, of which LOV2 is more sensitive toward light and more important for the physiological response compared with LOV1. Some physiological responses are plant phototropism, chloroplast migration and stomatal opening. Oat phototropin 1 together with light-dependent autophosphorylation shows a reduced electrophoretic mobility and reduced immunoreaction against a heterologous antiserum; both effects were suggested to be caused by phosphorylation at the same sites (M. Salomon, E. Knieb, T. von Zeppelin and W. Rudiger [2003] Biochemistry 42, 4217-4225). In this study, we show that both effects can be separated from each other: at low temperature, reduced immunoreaction preceded the mobility shift, and irradiation with UV-C light led to the mobility shift without the loss of immunoreactivity. We demonstrated that UV-C light at 280 nm, which does not match any absorption maximum of FMN, leads to autophosphorylation of phototropin. It is hypothesized that UV-C light causes differential activation of the LOV domains via energy transfer from aromatic amino acids.  相似文献   

8.
Lee CM  Chen CH  Chen HW  Hsu JL  Lee GH  Liaw WF 《Inorganic chemistry》2005,44(19):6670-6679
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively.  相似文献   

9.
The bromocyclopentadienyl complex [(eta5-C5H4Br)Re(CO)3] is converted to racemic [(eta5-C5H4Br)Re(NO)(PPh3)(CH2PPh2)] (1 b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH3)] with nBuLi and I2 gives (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH3)] ((S)-6 c; 84 %), which is converted (Ph3C+ PF6 -, PPh2H, tBuOK) to (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH2PPh2)] ((S)-1 c). Reactions of 1 b and (S)-1 c with Pd[P(tBu)3]2 yield [{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-X)}2] (10; X = b, Br, rac/meso, 88 %; c, I, S,S, 22 %). Addition of PPh3 to 10 b gives [(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(PPh3)(Br)] (11 b; 92 %). Reaction of (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] ((S)-2) and Pd(OAc)(2) (1.5 equiv; toluene, RT) affords the novel Pd3(OAc)4-based palladacycle (S,S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-OAc)2Pd(mu-OAc)2Pd(mu-PPh2CH2)(Ph3P)(ON)Re(eta5-C5H4)] ((S,S)-13; 71-90 %). Addition of LiCl and LiBr yields (S,S)-10 a,b (73 %), and Na(acac-F6) gives (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(acac-F6)] ((S)-16, 72 %). Reaction of (S,S)-10 b and pyridine affords (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(NC5H5)(Br)] ((S)-17 b, 72 %); other Lewis bases yield similar adducts. Reaction of (S)-2 and Pd(OAc)2 (0.5 equiv; benzene, 80 degrees C) gives the spiropalladacycle trans-(S,S)-[{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)}2Pd] (39 %). The crystal structures of (S)-6 c, 11 b, (S,S)- and (R,R)-132 C7H8, (S,S)-10 b, and (S)-17 b aid the preceding assignments. Both 10 b (racemic or S,S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.  相似文献   

10.
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T < or = 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.  相似文献   

11.
The blue light photoreceptor cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized at room temperature in vitro in aqueous solution by optical absorption and emission spectroscopic studies. The protein non-covalently binds the chromophores flavin adenine dinucleotide (FAD) and N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). In the dark-adapted state of cry3, the bound FAD is present in the oxidized form (FAD(ox), ca. 38.5%), in the semiquinone form (FADH., ca. 5%), and in the fully reduced neutral form (FAD(red)H2) or fully reduced anionic form (FAD(red)H-, ca. 55%). Some amount of FAD (ca. 1.5%) in the oxidized state remains unbound probably caused by chromophore release and/or denaturation. F?rster-type energy transfer from MTHF to FAD(ox) is observed. Photo-excitation reversibly modifies the protein conformation causing a slight rise of the MTHF absorption strength and an increase of the MTHF fluorescence efficiency (efficient protein conformation photo-cycle). Additionally there occurs reversible reduction of bound FAD(ox) to FAD(red)H2 (or FAD(red)H-, FAD(ox) photo-cycle of moderate efficiency), reversible reduction of FADH. to FAD(red)H2 (or FAD(red)H-, FADH. photo-cycle of high efficiency), and modification of re-oxidable FAD(red)H2 (or FAD(red)H-) to permanent FAD(red)H2 (or FAD(red)H-) with low quantum efficiency. Photo-excitation of MTHF causes the reversible formation of a MTHF species (MTHF', MTHF photo-cycle, moderate quantum efficiency) with slow recovery to the initial dark state, and also the formation of an irreversible photoproduct (MTHF').  相似文献   

12.
The synthesis, structure, and physical properties of a series of oxo-bridged dinuclear Fe(III) complexes containing pendant naphthalene groups are described. The compounds [Fe(2)O(O(2)CCH(2)-C(10)H(7))(tren)(2)](BPh(4))(NO(3))(2) (8), [Fe(2)O(O(2)CCH(2)-C(10)H(7))(TPA)(2)](ClO(4))(3) (9), Fe(2)O(O(2)CCH(2)-C(10)H(7))(2)(Tp)(2) (10), and Fe(2)O((O(2)CCH(2)CH(2))(2)-C(10)H(6))(Tp)(2) (11) (where tren is tris(2-aminoethyl)amine, TPA is tris(2-pyridyl)amine, and Tp is hydrotrispyrazolylborate) have been characterized in terms of their structural, spectroscopic, magnetic, and photophysical properties. All four complexes exhibit moderately strong intramolecular antiferromagnetic exchange between the high-spin ferric ions (ca. -130 cm(-)(1) for H = -2JS(1).S(2)). Room-temperature steady-state emission spectra for compounds 8-11 in deoxygenated CH(3)CN solution reveal spectral profiles similar to methyl-2-naphthyl acetate and [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) (13, where TACN-Me(3) is N,N,N-1,4,7-trimethyltriazacyclononane) but are significantly weaker in intensity relative to these latter two compounds. Time-resolved emission data for the iron complexes following excitation at 280 nm can be fit to simple exponential decay models with tau(obs)(S)()1 = 36 +/- 2, 32 +/- 4, 30 +/- 5, and 39 +/- 3 ns for compounds 8-11, respectively. The decays are assigned to the S(1) --> S(0) fluorescence of naphthalene; all of the lifetimes are less than that of the zinc model complex (tau(obs)(S)()1 = 45 +/- 2 ns), indicating quenching of the S(1) state by the iron-oxo core. Nanosecond time-resolved absorption data on [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) reveal a feature at lambda(max) = 420 nm that can be assigned as the T(1) --> T(n) absorption of the naphthalene triplet; the rise time of 50 +/- 10 ns corresponds to an intersystem crossing rate of 2 x 10(7) s(-1). A similar feature (though much weaker in intensity) is also observed for compound 8. The order-of-magnitude reduction in the T(1) lifetime of the pendant naphthalene for all of the iron-oxo complexes (tau(obs)(T)1 = 5 +/- 2 micros vs 90 +/- 10 micros for [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4))) indicates quenching of the naphthalene triplet with an efficiency of >90%. Neither the naphthalene radical cation nor the reduced Fe(II)Fe(III) species were observed by transient absorption spectroscopy, implying that energy transfer is the most likely origin for the quenching of both the S(1) and T(1) states. Spectral overlap considerations strongly support a F?rster (i.e., dipolar) mechanism for energy transfer from the S(1) state, whereas the lack of phosphorescence from either the free naphthyl ester or the Zn model complex suggests Dexter transfer to the diiron(III) core as the principal mechanism of triplet quenching. The notion of whether spin exchange within the diiron(III) core is in part responsible for the unusual ability of the iron-oxo core to engage in energy transfer from both the singlet and triplet manifolds of naphthalene is discussed.  相似文献   

13.
Flavins were extracted from sporangiophores of the lower fungus Phycomyces blakesleeanus and identified by HPLC with fluorescence detection. In the wild-type strain NRRL1555 they were found to be present at the following concentrations: riboflavin (5.5 x 10(-6) M), flavin mononucleotide (FMN) (4.0 x 10(-6) M) and flavin adenine dinucleotide (1.4 x 10(-6) M). The HPLC elution profiles of the wild type were compared to a set of behavioral mutants (genotype mad) with specific defects in their light-transduction pathway. The photoreceptor mutants C109 (madB), C111 (madB) and L1 (madC) had normal amounts of flavins. The most prominent changes were found in single mutants with a defective madA gene which contained about 25% of riboflavin and about 10% of FMN and FAD normally found in the wild type. A hypertropic mutant with a defective madH gene contained instead 80% of riboflavin and 120% of FMN and FAD. The double mutant L52 (madA madC) and the triple mutant L72 (madA madB madC) had normal amounts of FAD and FMN. This indicates that the madC mutation, which itself causes loss of light sensitivity and which affects the near-UV/blue-light receptor (Galland and Lipson, 1985, Photochem. Photobiol. 41, 331-335) functions as a restorer of the flavin content in a genetic madA background. The double mutant L51 (madA madB) had about 40% of FMN and FAD, suggesting that the madB mutation functions as a partial restorer of flavin content. The photogravitropic thresholds (450 nm) reported for the wild type and the madA and madH mutants were positively correlated to the endogeneous concentrations of FMN and FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A systematic investigation of the factors governing the reaction product composition, hydrogen bonding, and symmetry was conducted in the MoO3/3-aminoquinuclidine/H2O system. Composition space analysis was performed through 36 individual reactions under mild hydrothermal conditions using racemic 3-aminoquinuclidine. Single crystals of three new compounds, [C7H16N2][Mo3O10] x H2O, [C7H16N2]2[Mo8O26] x H2O, and [C7H16N2]2[Mo8O26] x 4 H2O, were grown. The relative phase stabilities for these products are dependent upon the reactant mole fractions in the initial reaction gel. This phase stability information was used to direct the synthesis of two new noncentrosymmetric compounds, using either (S)-(-)-3-aminoquinuclidine dihydrochloride or (R)-(+)-3-aminoquinuclidine dihydrochloride. [(R)-C7H16N2]2[Mo8O26] and [(S)-C7H16N2]2[Mo8O26] both crystallize in the noncentrosymmetric space group P2(1) (No. 4), which has the polar crystal class 2 (C2). The second-harmonic generation activities were measured on sieved powders. The structure-directing properties of the molybdate components in each compound were determined using bond valence sums. The structures of all five compounds were determined using single-crystal X-ray diffraction.  相似文献   

15.
Phy3-LOV2 is the chromophore domain of a blue-light photoreceptor for tropic responses of plants. FMN is noncovalently bound to phy3-LOV2, and the protein structure is characteristic of the LOV (light-oxygen-voltage) domain. Primary photoreaction is considered to be adduct formation between FMN and a cysteine, while deprotonation of the cysteine S-H group was suggested. On the basis of the infrared spectral analysis, however, we have shown that the cysteine of phy3-LOV2 is in the protonated S-H form, and not in the thiolate form in the ground state. Upon formation of S390, the S-H group disappears, presumably forming the adduct between FMN and Cys966. S390 can be trapped at 150 K, and the protein structure of S390 may not be changed drastically at 295 K.  相似文献   

16.
Phototropin is a plant blue-light sensor protein that possesses a flavin mononucleotide (FMN) as the chromophore in LOV domains. Its photoreaction is an adduct formation between FMN and a nearby cysteine that takes place in the triplet excited state of FMN. In this communication, we revealed that the reactive cysteine is protonated in the triplet excited state of the LOV2 domain of Adiantum phytochrome3 by means of low-temperature FTIR spectroscopy. Its hydrogen-bonding interaction is strengthened in the triplet excited state, presumably with the FMN chromophore. Such strong interaction drives adduct formation on a microsecond time scale.  相似文献   

17.
The acidity constants of the reduced and oxidized species of ferrocenylphosphonic acids FcPO3H2, FcCH2PO3H2 and fc(PO3H2)2 (Fc = (eta5-C5H5)Fe(eta5-C5H4), fc = (eta5-C5H4)Fe(eta5-C5H4)) in water have been evaluated by potentiometric, 31P NMR, and electrochemical methods. The oxidized forms are more acidic than the reduced ones. The interaction between the redox centre and the charged oxygen atoms of the phosphonate group is shown to be electrostatic. The maximum oxidation shift DeltaE between the protonated and unprotonated species increases with the number of charges of the substrate and decreases with the increase of the distance between the ferrocenyl centre and the oxygen atoms of the phosphonate group. The structure of FcPO3Na2.5H2O is determined. The compound crystallizes in the monoclinic system. It is lamellar with an inorganic layer formed by tetramers Na4O14, the ferrocenyl groups occupying the interlamellar space.  相似文献   

18.
An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.  相似文献   

19.
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.  相似文献   

20.
Reaction of [RuCl(2)(eta(6)-C(6)H(6))](2) with [10-(CH(3))(2)S-7,8-nido-C(2)B(9)H(10)](-) or [9-(CH(3))(2)S-7,8-nido-C(2)B(9)H(10)](-) afforded the expected cationic complexes [Ru(eta(5)-n-(CH(3))(2)S-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))](+)(n= 10, (1); 9, (3)), but also the unexpected neutral Ru(eta(5)-10-HS-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))(2) or Ru(eta(5)-9-(CH(3))S-7,8-C(2)B(9)H(10))(eta(6)-C(6)H(6))(4) by double and mono demethylation of the (CH(3))(2)S moiety, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号