首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用高温固相反应法在还原气氛下制备了Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉。利用X射线衍射仪、荧光光谱仪和紫外可见分光光度计对样品的晶体结构、激发光谱、发射光谱与荧光衰减寿命以及漫反射光谱进行测试分析。实验结果表明:所制得的样品为单一相的Li2SrSiO4晶体结构化合物。Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉的激发光谱均呈现出宽激发带,其中最强的激发峰位于408 nm左右。在此波长激发下可得到峰值位于570 nm左右的宽波段单峰发射光谱,其对应于Eu2+离子4f65d1→4f7电子跃迁。La3+掺杂Li2SrSiO4:Eu2+荧光粉基质产生了晶格缺陷[2La·Sr·V″Sr],其可以吸收光能并将能量传递给发光中心离子Eu2+,进而增强Li2Sr0.995SiO4:0.005Eu2+荧光粉的发光强度。漫反射光谱和荧光衰减寿命测试结果也证实La3+掺杂能够增加Eu2+的激发态吸收能量,延长发光中心Eu2+离子荧光衰减寿命。  相似文献   

2.
白色荧光粉NaGd(MoO42:Dy3+,Eu3+的水热合成及发光性能   总被引:1,自引:0,他引:1  
采用谷氨酸辅助水热法合成了八面体形NaGd(MoO4)2:Dy3+,Eu3+白色荧光粉.X射线衍射结果表明,合成的样品为四方晶系的NaGd(MoO4)2纯相.扫描电子显微镜照片显示所制备的粒子为八面体形,各边长约为2μm.荧光光谱结果表明,在NaGd(MoO4)2:4%Dy3+,yEu3+(y=0,0.5%,0.6%,0.7%,0.8%,0.9%,1.0%)样品中,随着Eu3+掺入量的增加,Dy3+的发射峰逐渐减弱,而Eu3+的发射峰逐渐增强,说明Dy3+-Eu3+之间存在能量传递.通过色坐标图可知,当Eu3+掺杂量y=0.9%时,荧光粉的色坐标(0.338,0.281)与标准的白光色坐标(0.33,0.33)接近,表明NaGd(MoO4)2:4%Dy3+,0.9%Eu3+是很好的近紫外光激发下的白色荧光粉.  相似文献   

3.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

4.
采用高温固相法合成Sr2-mMg1-nSi2O7∶mTb3+,nLi+(m=0.03~0.50,n=m)系列荧光粉。使用X射线衍射仪和荧光光谱仪对样品的物相和发光性质进行了表征。在377 nm紫外光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于490 nm,542 nm,590 nm和613 nm处,分别对应于Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射。调节Tb3+离子掺杂浓度,可实现荧光粉的发光颜色从蓝到白、黄、绿的可调发射;名义组成为Sr1.95Mg0.95Si2O7∶0.05Tb3+,0.05Li+的荧光粉在紫外光(377 nm)激发下发白光,其色坐标(0.322,0.317)接近纯白光(0.33,0.33),是一种潜在的LED用单基质白光荧光粉。  相似文献   

5.
NaF助熔剂对Sr2MgSi2O7:Eu2+,Zr4+荧光粉结构及发光性能影响   总被引:1,自引:0,他引:1  
在还原性气氛下采用高温固相法合成了适合近紫外(λex=375 nm)激发的光致发光蓝色荧光粉Sr2MgSi2O7:Eu2+,Zr4+,研究了NaF助熔剂对Sr2MgSi2O7:Eu2+,Zr4+荧光粉晶体结构、颗粒形貌及发光性能影响。结果表明:适量的NaF助熔剂有利于样品的晶化,所获得样品的颗粒形貌更加规整,能有效降低中间粒径(D50)并控制粒径分布;只含中间颗粒(D50)样品的发光强度高于含全颗粒样品的发光强度;NaF助熔剂最佳添加含量为6%(质量分数),可使样品的发光强度提高446%;掺杂适量的Zr4+有利于样品的发光强度的提高,最后探索NaF助熔剂及掺杂Zr4+离子提高发光性能的机制。  相似文献   

6.
用固相反应法合成了具有单相的Li2EuSiO4结构的Li2Sr1-x-ySiO4:xCe3+,yTb3+系列样品。荧光光谱研究表明,Li2SrSiO4:Ce3+发射很强的蓝光,最强的激发峰位于360 nm;而Li2SrSiO4:Tb3+发射很强的绿光,最强的激发激发峰位于243 nm,但在350~410 nm的激发非常微弱。在Ce3+,Tb3+共掺杂的样品Li2Sr0.99-ySiO4:0.01Ce3+,yTb3+中,观察到Ce3+对Tb3+的共振能量传递。由于Ce3+对Tb3+能量传递,Tb3+的激发光谱中出现360 nm附近的宽激发峰。控制Tb3+/Ce3+掺杂浓度比可以实现绿蓝双基色的调制。这种双基色的荧光粉有望在紫外激发的白光LED中获得应用。  相似文献   

7.
采用高温固相法合成了系列单相Ca(1-x-y)Al2O4:Eu2+x,Nd3+y(0≤x≤0.045,0≤y≤0.0037)粉末样品,并表征了其发光特性.研究结果表明,样品的发射光谱为最大发射峰位于440nm的宽带谱,属于Eu2+的4f65d→4f7跃迁.通过对Eu2+,Nd3+掺杂量与样品发光性能之间关系的研究发现,Eu2+和Nd3+最佳掺杂量分别为x=0.00125和y=0.0025,并且Nd3+对改善蓝色长余辉材料CaAl4:Eu2+的余辉性能具有重要的作用.在最佳掺杂条件下,样品的余辉时间可达1000min,初始亮度大于1200mcd/m2,60min后发光粉的亮度仍然在10mcd/m2以上.利用正电子湮灭技术和热释光技术,研究了Eu2+和Nd3+对CaAl2O4:Eu2+,Nd3+材料的发光性能的影响.  相似文献   

8.
采用溶剂热法合成了一种单一相白色荧光粉NaY(WO4)2∶Eu3+,Tb3+,Tm3+。通过X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)及荧光光谱(PL)对制备的系列样品的物相、形貌和荧光性质进行了表征。结果表明:在荧光粉NaY(WO4)2∶x%Eu3+,4%Tb3+,1%Tm3+(x=5,10,15,20)中,随着Eu3+掺入量的增加,发光从绿光区进入白光区。同时观察到Tb3+到Eu3+的有效能量传递。  相似文献   

9.
Dy3+,Eu3+双掺单基质Ca9Y(PO4)7白色荧光粉的合成与发光性能   总被引:1,自引:0,他引:1  
以具有多种格位的Ca9Y(PO4)7作为基质, 以Dy3+和Eu3+作为共激活剂, 利用高温固相法合成了一种单基质白光荧光粉. X射线衍射证实样品属于三方晶系菱面体结构, Dy3+和Eu3+在Ca9Y(PO4)7晶体中占据了Y3+ 的格位. 样品在365 nm紫外线激发下, 荧光光谱同时出现了Dy3+和Eu3+的特征发射, 且发光强度以及色度坐标随着Dy3+和Eu3+掺杂比率的变化而有规律变化, 所有样品的发射均处于白光区域. 利用近紫外芯片作为激发源, 单一基质白色荧光粉Ca9Y1-x-y(PO4)7: xDy3+, yEu3+可应用于白光发光二极管等领域.  相似文献   

10.
采用EDTA-柠檬酸联合配位法制备一系列组成的(Sr1-xEux)2CaMoO6橙红色荧光粉。通过X射线衍射、拉曼光谱、扫描电镜及荧光光谱研究不同Eu3+离子掺杂浓度下Sr2CaMoO6∶Eu3+荧光粉的晶体结构、掺杂位置、形貌及其光致发光性能。Rietveld全谱拟合结果表明:掺杂后样品为(Ca/Mo)O6八面体少量倾斜的空间群为P21/n的正交双钙钛矿结构,随着Eu3+离子共掺杂浓度的增加,样品的晶胞体积减小;Eu3+离子取代八面体间隙的Sr2+位置致使双钙钛矿的T2g(1)拉曼振动模发生蓝移;在近紫外区宽而强电荷迁移带和蓝光激发下,该荧光粉分别发射以Eu3+离子5D0-7F1磁偶极跃迁为主的橙光和以5D0-7F2电偶极跃迁为主的红光,组成为(Sr0.98Eu0.02)2CaMoO6的荧光粉具有最强的橙红光发射强度,是一种潜在的适用于近紫外LED芯片的光转换红光材料。  相似文献   

11.
高温固相法合成Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F荧光粉,并用X射线衍射(XRD)、荧光光谱(PL)测定分析了其晶体结构及光谱性质。结果表明:当Tb3+掺杂量x=0.07时,发光强度最高,发射主峰位于545 nm,并进一步研究了Ce3+,Tb3+共掺的样品中Ce3+→Tb3+能量传递过程。其次,测试由近紫外LED(~380 nm)和三基色荧光粉(Ba0.11Sr2.89Ce0.01Tb0.07Na0.08AlO4F,BAM and Sr2Si5N8:Eu2+)封装的白光LED光电性能,其色品坐标(x=0.3223,y=0.3408),色温5500 K,显色指数为86.26。因此,Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F可作为一种潜在的适用于近紫外LED激发的荧光材料。  相似文献   

12.
采用均相沉淀法制备了Ag@SiO2@(Y,RE)(OH)CO3.H2O(RE=Eu,Tb)核壳结构微球,经过700℃焙烧后成功制备出Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)核壳结构发光材料。XRD谱图表明Ag核具有结晶良好的面心立方结构;SiO2层为无定型;Y2O3层为立方晶系。FTIR谱图表明核壳之间以化学键相结合。TEM照片表明合成了核壳结构的表面光滑的复合微球,分散良好,大小均匀,Ag核的粒径分布为50±20 nm;SiO2层的厚度为20~30 nm;Y2O3:RE3+(RE=Eu,Tb)层厚度约为125 nm。电子衍射图像表明Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)为多晶结构。UV-Vis光谱表明表面包覆使Ag离子的等离子体共振吸收峰发生了红移。荧光光谱表明Ag@SiO2@Y2O3:Eu3+具有Eu3+的特征红光发射,Ag@SiO2@Y2O3:Tb3+具有Tb3+的特征绿光发射,但是发光强度均比纯的Y2O3:RE3+有所减弱,说明贵金属的引入对稀土Y2O3:RE3+(RE=Eu,Tb)的发光起到了荧光猝灭的作用。  相似文献   

13.
采用高温固相反应法制备了不同浓度Si-N共掺的CaAl2O4:Eu2+蓝色荧光粉,发现只需2%(摩尔分数)的Si-N共掺就可以明显提高荧光粉的荧光性能。研究还发现在CaAl2O4:Eu2+,Sm3+中掺入Si-N后,荧光粉的荧光强度和余辉性能都有提高。通过荧光粉的光谱图,发现共掺没有改变荧光粉中发光中心Eu离子的价态,而电子顺磁共振(EPR)谱则表明,Si-N共掺对Eu离子周围的配位环境产生了较大的影响。这说明掺杂的Si-N倾向于取代Eu2+附近的Al-O,并且由于Si-N键相对于Al-O键具有较短的键长,使发光中心周围晶体骨架的刚性得到了增强,从而减少了晶格热震动导致的非辐射跃迁能量损失,提高荧光粉的发光性能。同时,热释光谱表明,掺杂的Si-N会在发光离子周围产生新的缺陷能级,从而提高荧光粉的余辉性能。  相似文献   

14.
采用微波辅助法合成了蓝-绿色荧光粉Li2CaSiO4∶Eu2+,该荧光粉能很好的与紫外光及蓝光LED匹配。分别采用X射线衍射(XRD)、扫描电镜(SEM)和激发-发射光谱(PLE/PL)对样品进行了表征。X射线衍射数据与标准卡片PDF#27-290很好吻合。扫描电镜测试表明样品粒径在2~5μm。在紫外光和蓝光激发下,Li2CaSiO4∶1%Eu2+发射主峰位于478 nm,对应于Eu2+的t2g→8S7/2电子跃迁,半高峰宽31 nm。样品发光性能与Eu2+掺杂浓度有关,且Eu2+的最佳掺杂浓度为1%。合成的样品色坐标为(0.09,0.24),可作为白光LED用蓝-绿色荧光材料。  相似文献   

15.
在还原气氛下高温固相法合成了CaAl12O19:Eu2+,Cr3+荧光粉.样品光谱显示:Eu2+发射带与Cr3+吸收带有重叠,具备Eu2+-Cr3+之间发生能量传递必要条件.在290 nm近紫外光激发下,单掺杂Eu2+和Cr3+时样品均无691 nm发射,仅在Eu2+,Cr3+共掺时才出现691 nm发射,这证明Eu2+和Cr3+之间发生了能量传递,且监测691 nm时样品的激发光谱也证实了这一点.CaAl12O19:1%Eu2+,x%Cr3+样品组的发射光谱研究表明:增大x能提高Cr3+红光与Eu2+蓝紫光发射强度之比及Eu2+-Cr3+之间能量传递效率.CaAl12O19:2%Cr3+,x%Eu2+样品组的激发光谱分析表明:x>2时,Cr3+在415 nm处的吸收效率相对于565 nm有显著提高.还对样品CaAl12O19:1%Eu2+,1%Cr3+荧光寿命和能量传递速率进行了简单分析.  相似文献   

16.
通过高温固相反应合成了La1/3NbO3∶Sm3+荧光粉.样品的荧光光谱表明,La1/3NbO3∶Sm3+荧光粉最强的激发带在406 nm,对应于Sm3+的6H5/2→4K11/2跃迁,属于近紫外区(365~410 nm).当激发波长为406nm时,样品的最强发射峰位于596 nm,是由Sm3+的4G5/2→6H7/2跃迁而产生的.因此,La1/3NbO3∶Sm3+可以作为基于近紫外激发的白光发光二极管(LED)的红光材料.而且,La位共掺杂Sr2+,Ba2+和Bi3+使样品的荧光强度大大增加,在最佳掺杂浓度时的量子产率分别为5.4%,7.5%和5.3%.  相似文献   

17.
新型荧光粉Ca2Zn4Ti16O38∶Pr3+,Na+的合成和红色长余辉性质   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成了Ca2Zn4Ti16O38:Pr3+,Na+荧光粉.通过X-射线衍射和荧光光谱表征样品的物相组成和发光性质.X射线衍射(XRD)分析表明添加适量的H3BO3作助熔剂有利于形成良好的Ca2Zn4Ti16O38晶体结构.荧光光谱表明Ca2Zn4Ti16O38:Pr3+,Na+在可见光区(450~495 nm)呈现Pr3+离子的4f→4f厂特征激发光谱以及613 nm(1D2→3H4)和644 nm(3P0→3F2)特征发射.Ca2Zn4Ti16O38:Pr3+,Na+被可见光(475 nm)激发产生的(3P0→3F2)(644 nm)红色发射呈现出极慢的衰减特性.Ca2Zn4Ti16O38:Pr3+,Na+是一种新型的可见光激发红色长余辉荧光粉.  相似文献   

18.
以化学沉淀法制备单相的铕离子掺杂硼铝酸盐红色荧光粉YAl3(BO3)4∶Eu3+,考察了焙烧温度、掺铕量等因素对材料性能的影响,用X射线衍射、扫描电镜、激发光谱和发射光谱对荧光粉的结构、形貌和发光性能进行了表征.以尿素为沉淀剂,900℃焙烧沉淀前驱体可得到单相荧光粉YAl3(BO3)4∶Eu3+,反应温度比传统高温固相法降低了300℃;沉淀法制备的荧光粉粒径分布范围小,无团聚现象,粒径约300nm.掺铕量为10%(物质的量比)时发光强度最大.在260nm的紫外光激发下,Eu3+的5 D0→7 F2的电偶极跃迁最强,发射光为618nm的红光.  相似文献   

19.
采用高温熔融法制备Eu3+?Tb3+共掺杂SiO2?B2O3?Na2O?Y2O3?P2O5前驱体玻璃。对前驱体玻璃粉末进行差示扫描量热(DSC)分析,确定玻璃陶瓷样品的热处理温度。前驱体玻璃热处理后,采用X射线衍射(XRD)和扫描电镜(SEM)分析可知前驱体玻璃中有Na3.6Y1.8(PO4)3晶粒析出。利用荧光光谱对玻璃陶瓷样品的发光性能进行表征,同时分析了Tb3+离子的荧光衰减曲线,确定Eu3+、Tb3+离子的发光机理以及能量传递过程。通过对Eu3+?Tb3+共掺杂玻璃陶瓷样品的发射光谱采集并用色坐标软件和色温计算程序,获得玻璃陶瓷样品的色坐标和相关色温。  相似文献   

20.
利用高温固相反应法合成了Ce4 和Eu3 共掺杂的Ca2-xEuxSn1-yCeyO4样品,并对其结构和发光特性进行了研究。X射线衍射结果显示,在Ca2SnO4中同时掺入Ce4 和Eu3 离子没有改变其晶体结构。Ca2-xEuxSn1-yCeyO4样品的发射光谱随Eu3 掺杂浓度产生很大变化,当Eu3 掺杂浓度低时,样品中同时存在着Ce4 -O2-的蓝光发射和Eu3 的红光发射;当Eu3 掺杂浓度较高时,样品呈现出Eu3 离子的红光发射。Ce4 -O2-蓝色发光的寿命约为81μs,其能量来源于O2-和Ce4 离子间的电荷迁移吸收;而Eu3 红色发光的寿命约为830μs,其能量来源于O2-和Eu3 离子间的电荷迁移吸收。Eu3 -O2-键比Ce4 -O2-键更容易吸收紫外光,两者之间没有能量传递现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号