首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An understanding of high-temperature aging effects on the electrical properties of electrolytes is very important in selecting optimum compositions for practical applications. The aging behavior and mechanisms of doped zirconia ceramics have been extensively studied. However, little information is available regarding the aging behavior of ceria-based electrolytes. The present study has demonstrated that a high-temperature aging at 1000 °C has a significant effect on the ionic conductivity of the Y- or Gd-doped ceria (Ce1−xYxO2−δ and Ce1−xGdxO2−δ), especially in the case of the Gd doping. The aging behavior is characterized by a critical dopant concentration, above which the aging has a detrimental effect on the conductivity of the doped ceria ceramics. The aging behavior in the doped ceria cannot be explained using the aging mechanisms applied to the doped zirconia. Instead, the formation of the microdomains in the doped ceria has been acknowledged to be the main contribution to the aging behavior of the Y- or Gd-doped ceria ceramics. The formation ability of microdomains has been estimated to be in the order of La3+>Gd3+>Y3+, based on the degree of size mismatch between the dopant ion and Ce4+ ion. The critical dopant concentrations at which the microdomains start to form for La3+, Gd3+ and Y3+ in the doped ceria ceramics are x=0.15, 0.2 and 0.25, respectively. This critical dopant concentration is also an important indication: below which the conductivity is governed by only the association enthalpy, and above which the conductivity is dominated mainly by the microdomains rather than the association enthalpy.  相似文献   

2.
K. Singh  S. A. Acharya  S. S. Bhoga 《Ionics》2006,12(4-5):295-301
Ce(1−x)Gd/Sm x O2−δ (x = 0.05–0.2, GDC/SDC) nanometric powder was prepared by glycine-nitrates combustion synthesis, by strictly following uniformity in the preparation route. The thermochemical properties of the obtained precursor were studied by TGA/DTA. Crystallization of the fluorite phase occurred on heating at 800 °C or higher temperature. The grain size of calcined powder was found to be about 15 nm. Densification was studied as a function of dopant content. SDC was found more sinterable than GDC. Crystal structure and microstructure were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrical characterization was carried out using the impedance spectroscopy method in the frequency range of 50 Hz–13 MHz. The bulk conductivity of SDC is higher than GDC pellet for all concentration ranges. The results were analyzed by using the concept of change of the chemical bond ionicity due to the replacement of the host by dopant. Guest/host ionic size, valence mismatch ratio and their consequences are counted semiquantitatively into the configurational and thermal entropy.  相似文献   

3.
To understand and engineer applications for mixed conducting oxides, it is desirable to have explicit, analytical expressions for the functional dependence of defect concentration and transport properties on the partial pressure of the external gas phase. To fulfill this need, general expressions are derived for the functional dependence of defect concentration on the oxygen partial pressure () for the mixed ionic electronic conductors. The model presented in this paper differs from expressions obtained using the popular Brouwer approach because they are continuous across multiple Brouwer regions.
Eric D. WachsmanEmail:
  相似文献   

4.
5.
Composite electrolytes are well-known multiphase systems and exhibit maxima in the conductivity at certain second-phase concentration. An attempt has been made to investigate a number of sodium sulfate (Na2SO4)-based composite systems. The dispersoids that have been used are MgO, Al2O3, and SiO2. The samples have been characterized using impedance spectroscopy, X-ray diffraction, and differential scanning calorimetry. The maximum conductivity has been observed for MgO dispersed system, and the percolation threshold has been observed at 30-mol% dispersoid, MgO concentration. Interestingly, two maxima have been observed in case of the Na2SO4–SiO2 and Na2SO4–Al2O3 composite systems. In the Na2SO4–SiO2 system, the first maximum occurs at lower concentration, i.e., in the range between 10 and 20 mol%, whereas the second occurs at the 40-mol% dispersoid concentration. For the Na2SO4–Al2O3 system, although slightly indistinguishable, two peaks in the conductivity vs composition plot have been observed around 12- and 30-mol% Al2O3 concentrations.  相似文献   

6.
The relation between cell voltage (Vcell), applied chemical potential difference (Δμ(O2)) and cell current (It) for solid oxide fuel cells (SOFC) based on mixed ionic electronic conductors is derived by considering also the effect of electrode impedance. Four-probe measurements, combined with current interruption analysis, are considered to yield the relation between ionic current (Ii) and overpotential (η). The theoretical relations are used to analyze experiments on fuel cells with Ce0.8Sm0.2O1.9 and Ce0.8Gd0.2O1.9 electrolytes with La0.8Sr0.16CoO3 or Pt as the cathode and Ni/Ce0.9Ca0.1O1.9−xor Pt as the anode. The electrode overpotentials of these cells, determined by current interruption measurements, are discussed assuming different models including impeded mass transport in the gas phase for molecular and monoatomic oxygen and Butler-Volmer type charge transfer overpotential.  相似文献   

7.
Densification of Na4Zr2Si3O12 (NZS) solid electrolytes was performed by dispersing TiO2 (0.8–5.9 wt. %, corresponding to 5–30 mol %) in NZS powders prior to sintering at 1200°C. Increases in pellet density, from ca. 65 to 94% of the theoretical (X-ray density) value, and in electrical conductivity from 10−7 to 10−6 S/cm at 50°C were observed for small additions of TiO2, which acts as a sintering aid. AC impedance spectroscopy reveals that the enhancement is not a bulk effect but instead is associated with a reduction in inter-granular constriction resistances within porous NZS ceramics. The presence of adsorbed water species in NZS powders prepared via a sol-gel route is found to have a dramatic effect on the conductivity enhancement.  相似文献   

8.
In this article, we examine the conditions that favour the emission of Shockley partial dislocations (SPDs) that standoff from a grain boundary (GB) plane by a few lattice parameters as part of the atomic structure of some GBs. To do so, we consider GBs to be formed by the operation of arrays of intrinsic grain boundary dislocations (GBDs) that create the tilt and twist misorientation, and the lattice mismatch between the two crystal grains adjoining the GB. The conditions to be considered that favour SPDs are the following: (1) Frank’s rule, (2) the proper sequential arrangement of partial dislocations to bound an intrinsic stacking fault and (3) the equilibrium stand-off distance (ESD). We apply an isotropic elasticity analysis to compute the ESD, in the absence of an applied stress, for SPDs emerging from asymmetric tilt GBs in two FCC metals, Cu and Al. The ESD is shown to be dependent on the glide plane orientation relative to the GB plane and on the position of the glide planes, relative to the position of the GBDs. An applied stress increases the ESD up to a critical stress that removes the SPDs without limit from the GB. We examine the effect of the stacking fault energy on the ESD and critical stress. The critical stress is effectively linearly dependent on the stacking fault energy. Finally, we present results of atomistic simulations of asymmetric tilt Σ11[1?0?1]{4?1?4}||{2?5?2} GBs in Cu bicrystal models subject to shock loading that behave in a manner similar to the elasticity predictions. The atomistic simulations reveal additional behaviour associated with elastic incompatibility between the two grains in the bicrystal models.  相似文献   

9.
Abstract

Grain refinement can be described by the classical kinetic equation using a negative value of the specific grain boundary Gibbs energy. A respective overview is offered reporting according observations and simulations, particularly linked to grain boundary segregation. Classical grain growth model is used in the treatment of evolution of the distribution function during refinement. The adapted model requires defining nucleation rate of new grains, which significantly influences the kinetics of the system of grains. Moreover, a jump in the distribution function is allowed at a certain value of the grain radius RJ, which separates old grains from newly nucleated ones. Evolution equation for both the critical radius Rc and separation radius RJ (jump position) as well as for the dimension-free distribution (shape) function are derived. Illustrative examples for the evolution of the system parameters under various nucleation rates of newly generated grains are presented.  相似文献   

10.
The microstructural and mechanical properties of hot-pressed Si3N4 ceramics after Si+ ion bombardent and annealing in N2 atmosphere have been investigated as a function of the ion fluence and the annealing temperature. The irradiations were carried out at target temperatures of about 80 K and 450 K with ion energies of 0.5 MeV and 1.0 MeV. In all cases the fluence range was subdivided into two regimes: a low-fluence regime with improved microhardness and fracture toughness, and a high-fluence regime with an absolute degradation of these properties. The transition fluence was found to strongly depend on the ion energy and implantation temperature. This property transition coincides with a microstructural transition from a highly damaged, but still crystalline material, to the formation of a buried amorphous layer. The amorphization results in a strong volume swelling which causes a closure of surface flaws. The latter process significantly enhances the fracture strength of the implanted material. Thermal relaxation of the modified mechanical properties was found to occur at temperatures above 800° C. The relationships between the ion-induced changes of the mechanical properties and the microstructural modifications will be discussed.  相似文献   

11.
The potential of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a solid polymer electrolyte film in rechargeable batteries system were explored. The flat, thin, and flexible films were prepared by solution casting technique. The ionic conductivity was investigated by alternating current impedance spectroscopy. The highest conductivity of 2.3 × 10−7 Scm−1 was obtained at 20wt.% of LiBF4 salts content, while 4.0 × 10−8 Scm−1 was obtained at 15wt.% LiClO4 salts loading. The observation on structure performed by X-ray diffraction shows the highest conductivity appears at amorphous phase.  相似文献   

12.
The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs). A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle, so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge, the potential barrier height reduces, so the electric properties were improved.  相似文献   

13.
H+-containing lanthanide-doped perovskites A(Ba, Sr etc.)B(Zr, Ce, Ti etc.)O3 are potential ceramic membranes for fuel cell and medium temperature water electrolysis (300–800 °C). The comparison studies of the hydrated and non-hydrated Yb-doped BaZrO3 and SrZrO3 were performed by thermal expansion, medium–high temperature neutron and room-temperature high-pressure Raman scattering. Neutron diffraction and elastic/quasi-elastic studies carried out for BaZrO3 ceramic show the presence of the protons, their successive diffusion above ∼600 °C, and then their departure above 750 °C (under vacuum). Phase transitions and their modification by proton insertion are discussed. A high-pressure Raman study of SrZrO3 performed at room temperature in the diamond anvil cell reveals the presence of two pressure-induced phase transitions at about 5 and 22 GPa and confirms that proton insertion modifies the phase transition sequences. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

14.
Lead-free non-stoichiometric (K0.470Na0.545)(Nb0.55Ta0.45)O3 (KNNT) textured ceramics were prepared by a reactive templated grain growth method using NaNbO3 (NN) templates. The Plate-like NaNbO3 (NN) templates were synthesized from bismuth layer-structured Bi2.5Na3.5Nb5O18 (BNN) particles by a topochemical microcrystal conversion (TMC) method. Using 5 wt% of NN templates, textured KNNT ceramics were fabricated, and their crystal structure, microstructure, dielectric and piezoelectric properties were compared with non-textured KNNT ceramics prepared by a conventional solid state reaction method. The textured KNNT ceramics exhibited high grain orientation and high dielectric constant. In addition, piezoelectric properties of textured KNNT ceramics were improved, giving a high piezoelectric coefficient d33 = 390 pC/N and piezoelectric coupling coefficient kp = 0.60.  相似文献   

15.
The structure, microstructure and low-temperature electrical properties of core-shell-type mixed conductors based on lanthanum gallate with Fe-doped grain boundaries are analyzed in depth. Electron probe microanalysis revealed that the iron concentration in the grain-boundary regions (shell) is below 1 at.% and their thickness is no more than 1.5 μm. The low-temperature (< 400 °C) electronic conductivity is enhanced by up to 2-3 orders of magnitude with respect to the corresponding undoped ceramics, as revealed by the analysis of impedance spectra combined with microstructural information. The electronic transport numbers lie in the range between 0.35 and 0.1 at 275 to 400 °C, decreasing at higher temperatures, where the influence of grain boundaries on the overall transport properties vanishes and the ionic conductivity increases.  相似文献   

16.
The in situ reduction growth of Ag nanoparticles (NPs) on unmodified polystyrene (PS) spheres is investigated via controlling Ag nucleation and growth rates by continuous dripping addition of reductant solution in the absence of surfactants. The sub-micro PS spheres were coated by a uniform coverage of Ag NPs with several shapes like elongated islands, spherical particles, and particle aggregates. The reaction temperature and reductant concentration are demonstrated to influence the crystal structure, distribution, and stability of the Ag NPs on the PS substrates. The heterogeneous nucleation and growth of Ag NPs on PS spheres are found to depend on the inhibition of in-solution reduction and homogeneous nucleation.  相似文献   

17.
We investigate the characteristics of intra‐grain and grain boundary defects in polycrystalline Si films, by employing quantitative electron paramagnetic resonance measurements on liquid phase crystallized layers with an average grain size of 200 µm and tailored solid phase crystallized Si layers with similar intra‐grain morphology but systematically varied grain sizes between 0.25 µm and 1 µm. The defect characteristics are found to be composed of two distinctive g ‐values of g = 2.0055 and 2.0032, which are attributed to grain boundary defects and intra‐grain defects, respectively. Additional hydrogenation leads to a reduction of the overall defect concentration, while a rapid thermal annealing process primarily heals intra‐grain defects.

  相似文献   


18.
A new method using Large Angle Convergent Beam Electron Diffraction (LACBED) patterns is proposed to measure accurately the grain boundary misorientation. The LACBED patterns which are obtained with a defocused convergent electron beam having a convergence semi-angle in the range 1 to 5o contain very sharp deficiency lines. Due to the good quality of the LACBED patterns, these sharp deficiency lines can be used to measure with great accuracy the grain boundary misorientation. In addition, since the LACBED method is a defocus mode method, the patterns contain at the same time information on the reciprocal space (the deficiency lines typical of the crystal orientation of the two grains on each side of the grain boundary) and on the real space (the image of the grain boundary). We describe a method which allows the identification of the misorientation from these LACBED patterns. The main point to consider is the accuracy which is about 0.05o. It is much better than the one obtained from other conventional methods used to measure this misorientation.  相似文献   

19.
王飞  赖文生  李如松  何彬  黎素芬 《中国物理 B》2016,25(6):66804-066804
Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al_2O_3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary(GB) plane and reaches the minimum on the GB plane(at the atomic layer next to the GB) for an O(Al) vacancy.The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot.Moreover,the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane,which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al_2O_3.  相似文献   

20.
Surface metallization of alumina ceramics was carried out by pulsed high energy density plasma (PHEDP). A layer of copper film was deposited on the surface of alumina ceramics. Scanning auger electron microscopy (SAM) analysis revealed that copper diffused deep into the alumina substrate. Bonding of alumina and copper film was good. The reaction between copper and alumina was studied by X-ray diffraction (XRD) analysis. A copper aluminum oxide unstable at high temperature and very difficult to be synthesized, cubic phase CuAl2O4, was detected. A kinetics complexity in reaction of PHEDP and ceramics was discussed. An adiabatic model was used to describe heating and quenching of the PHEDP processing and analyze the interaction between PHEDP and alumina ceramics. The experimental results suggest that PHEDP method is a useful technology for various metal–ceramics bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号