首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物质转化合成新能源化学品乙酰丙酸酯   总被引:2,自引:0,他引:2  
彭林才  林鹿  李辉 《化学进展》2012,24(5):801-809
生物质是唯一可替代化石资源获取液态燃料和化学品的可再生资源,近年来由生物质转化合成乙酰丙酸酯引起了研究者们越来越广泛的关注。乙酰丙酸酯是一类重要的化学中间体和新能源化学品,具有高的反应特性和广泛的工业应用价值。目前开发的从生物质资源出发转化合成乙酰丙酸酯的潜在合成途径可概括为4种:直接酸催化醇解法、经乙酰丙酸酯化、经5-氯甲基糠醛醇解和经糠醇醇解。本文分别介绍了这4种转化合成途径的化学反应过程及最新研究进展,从反应合成工艺、催化体系、经济可行性等方面评述了各自的特点与发展趋势,并分析了目前工业规模转化生物质合成乙酰丙酸酯仍面临的一些科学难点。最后,对今后该领域的研究前景进行了展望。  相似文献   

2.
The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures ( 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.  相似文献   

3.
正随着石油资源的相对贫乏和环境问题的加剧,寻求新的能源和途径来代替传统的化石资源越来越受到人们的关注.生物质在地球上含量丰富、分布广泛、价格较低廉且能够很好的实现碳循环,作为一种可持续和可再生资源,在取代传统的石油产品方面具有很大的潜力,能很好满足社会对燃料和化学品的需求,从而实现由不可再生的石油资源向可再生的生物能源的过渡.植物类生物质的主要成分是碳水化合物即纤维素和木质素,在一定条件下可  相似文献   

4.
Conversion of non-edible biomass into fuels and value-added chemicals has achieved great attention to cope the world's energy requirements. Lignocellulose based sugar alcohols such as sorbitol, mannitol, xylitol, and erythritol can be potentially used as emerging fuels and chemicals. These sugar alcohols can be converted into widely used products(e.g. polymer synthesis, food and pharmaceuticals industry). The heterogeneous catalytic production of sugar alcohols from renewable biomass provides a safe and sustainable approach. Hydrolysis, coupled with hydrogenation and hydrogenolysis has been proved to be more effective strategy for sugar alcohols production from biomass. This review summarizes the recent advances in biomass upgrading reactions for the production of sugar alcohols and their comprehensive applications.  相似文献   

5.
This paper describes several examples of knowledge-intensive technologies for the production of chemicals from biomass, which take advantage of the biomass structure in a more efficient way than the production of fuels or electricity alone. The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO(2) emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals, such as the replacement of fossil resources with CO(2) neutral biomass. Allied with this is the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion into either materials or (functional) chemicals with the aid of co-reagents such as ammonia, by various process steps to introduce functionalities such as -NH(2) into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this in order to by-pass the use, and preparation of, co-reagents as well as to eliminate various process steps by utilizing suitable biomass-based precursors for the production of chemicals.  相似文献   

6.
陈涛  彭林才 《化学通报》2018,81(1):45-51
5-乙氧基甲基糠醛(EMF)被认为是可替代化石能源的非常有前途的新型液态生物燃料,近年来由生物质资源制备EMF引起了国内外越来越广泛的关注。目前开发的合成EMF途径主要以糖类化合物(如果糖、葡萄糖、蔗糖、菊糖等)为原料,在乙醇溶剂中通过酸催化反应获得。本文针对EMF合成的化学反应过程及最新研究进展进行了综述,着重从反应起始原料、催化合成技术、催化行为与特点、过程经济可行性等方面对其进行评述和对比,并分析了目前工业规模转化生物质资源合成EMF仍面临的科学难点,对今后该领域的研究前景进行了展望,指出未来研究应朝着反应高效化、环境友好化及资源可持续利用方向深入开展。  相似文献   

7.
With concerns of diminishing fossil fuel reserves and environmental deterioration, great efforts have been made to explore novel approaches of efficiently utilizing bio-renewable feedstocks to produce chemicals and fuels. 5-Hydroxymethylfurfural(HMF),generated from dehydration of six-carbon ketose, is regarded as a primary and versatile renewable building block to realize the goal of production of these high valued products from renewable biomass resources transformation. In this review, we summarize the recent advances via green routes in the heterogeneous reaction system for the catalytic production of HMF from glucose conversion, and emphasize reaction pathways of these reaction approaches based on the fundamental mechanistic chemistry as well as highlight the challenges(such as separation and purification of products, reusing and regeneration of catalyst, recycling solvent) in this field.  相似文献   

8.
At a time when the focus is on global warming, CO(2) emission, secure energy supply, and less consumption of fossil-based fuels, the use of renewable energy resources is essential. Various biomass resources are discussed that can deliver fuels, chemicals, and energy products. The focus is on the catalytic conversion of biomass from wood. The challenges involved in the processing of lignocellulose-rich materials will be highlighted, along with the application of porous materials as catalysts for the biomass-to-liquids (BTL) fuels in biorefineries. The mechanistic understanding of the complex reactions that take place, the development of catalysts and processes, and the product spectrum that is envisaged will be discussed, along with a sustainable concept for biorefineries based on lignocellulose. Finally, the current situation with respect to upgrading of the process technology (pilot and commercial units) will be addressed.  相似文献   

9.
日益严重的全球性能源和环境问题促使开发利用可再生的生物质资源成为当前研究的一个热点。本文概述了生物质基多元醇合成燃料和化学品来实现生物质转化利用的一些最新进展,特别是集中介绍了甘油和山梨醇等多元醇催化水相重整合成氢气和液体烃等燃料、催化选择氢解和氧化合成高附加值化学品或化学中间体等方面的进展,分析了存在的问题和可能的解决措施以及今后的发展趋势,指出生物质基多元醇将成为今后合成可再生燃料和化学品的新型平台分子。  相似文献   

10.
Efficient utilisation of renewable biomass resources, particularly lignocellulosic biomass, for the production of chemicals and fuels has attracted much attention in recent years. The catalytic conversion of cellulose, the main component of lignocellulosic biomass, selectively into a platform chemical such as glucose, 5-hydroxymethyl furfural (HMF), sorbitol or gluconic acid under mild conditions is the most desirable route. Acid catalysis plays a crucial role in the conversion of cellulose via the cleavage of its glycosidic bonds. Owing to their unique features such as strong acidity, water-tolerance, low corrosiveness and recoverability, polyoxometalates have shown promising performances in transformations of cellulose into platform chemicals both in homogeneous and heterogeneous systems. This article highlights recent studies on polyoxometalates and polyoxometalate-based bifunctional catalysts or catalytic systems for the selective conversions of cellulose and cellobiose, a model molecule of cellulose, into platform chemicals.  相似文献   

11.
生物质利用新途径:多元醇催化合成可再生燃料和化学品   总被引:1,自引:0,他引:1  
沈宜泓  王帅  罗琛  刘海超 《化学进展》2007,19(2):431-436
日益严重的全球性能源和环境问题促使开发利用可再生的生物质资源成为当前研究的一个热点.本文概述了生物质基多元醇合成燃料和化学品来实现生物质转化利用的一些最新进展,特别是集中介绍了甘油和山梨醇等多元醇催化水相重整合成氢气和液体烃等燃料、催化选择氢解和氧化合成高附加值化学品或化学中间体等方面的进展,分析了存在的问题和可能的解决措施以及今后的发展趋势,指出生物质基多元醇将成为今后合成可再生燃料和化学品的新型平台分子.  相似文献   

12.
This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).  相似文献   

13.
Tandem catalytic reaction is a promising strategy to improve the utilization efficiency of energy and resources. The conventional hybrid catalysts cannot readily realize the precisely controlled synthesis of target products due to the unrestricted, open reaction environment. Assembling the hybrid catalyst with multiple active sites into core‐shell structured capsule catalyst is one of the most effective ways to enhance the selectivity of desired products during a tandem catalysis process, because the core‐shell structure offers a space‐confined reaction field and synergistic effect. This review describes our recent progresses on the design and synthesis of core‐shell structured zeolite capsule catalysts developed for C1 chemistry and biomass conversion. The various synthesis methods for constructing the well‐defined zeolite capsule catalysts are described in detail. The applications of the capsule catalysts in catalysis, including the middle isoparaffins synthesis from syngas, one‐step synthesis of dimethyl ether, and liquid‐phase tandem reaction of glycerol conversion, are discussed, respectively. Our perspectives regarding the challenges and opportunities for future research in the field are also provided.  相似文献   

14.
Selective and economic conversion of lignocellulosic biomass components to bio‐based fuels and chemicals is the major goal of biorefineries, but low yields and selectivity for fuel precursors such as sugars, furanics, and lignin‐derived monomers pose significant disadvantages in process economics. In this Minireview we summarize the existing protection strategies used in biomass chemocatalytic conversion processes and focus the discussions on the mechanisms, challenges, and opportunities of each strategy. We introduce a concept of using analogous methods to manipulate biomass catalytic conversion pathways during the upgrading of carbohydrates to fuels and chemicals. This Minireview may provide new insights into the development of selective biorefining processes from a different perspective, expanding the options for selective conversion of biomass to fuels and chemicals.  相似文献   

15.
Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals.  相似文献   

16.
With the depletion of crude oil reserves, the ever-increasing global energy consumption encourages the efforts to find alternative renewable sources for production of biofuels and value-added chemicals. The conversions of lignocellulosic biomass into biofuels and commodity chemicals via the biotechnological pathway have been the recent trend. Specifically, these products can be obtained through fermentation of reducing sugars, which are the main but basic derivatives from the biomass. In order to overcome the recalcitrant structure of the biomass for effective reducing sugar recovery, a pretreatment stage is normally required. Currently, one of the most novel forms of biomass pretreatment is using energy irradiation methods such as electron beam, gamma ray, pulsed electrical field, microwave and ultrasound. In general, these technologies are often used together with other more conventional chemical and/or biological pretreatment techniques for enhancing sugar recovery. Nevertheless, energy irradiation offers significant improvement in terms of possible cost reduction opportunities and reduced toxicity. Hence, this review highlights the recent studies of using energy irradiation for pretreating biomass as well as the industrial applications of reducing sugars in biotechnological, chemical and fuel sectors. In short, more research needs to be done at the scientific, engineering and economic levels to make energy irradiation one of the front runners in the field of biomass pretreatment.  相似文献   

17.
Alginate, a main carbohydrate compound of macroalgae, can be hydrothermally converted to valuable organic products, such as furfural and organic acids, over various types of catalysts. In this review, alginate is evaluated as a renewable biomass feedstock for the production of the useful chemicals, based on the structural differences between alginate and conventional lignocellulosic biomass feedstocks. The influence of different catalysts and reaction conditions on the alginate depolymerization and the product distribution is discussed. Finally, future research direction for the catalytic conversion of alginate is suggested.  相似文献   

18.
This review article encompasses the progress and conventional overview of current research activities of porous organic polymers (POPs), especially in catalysis, as they have garnered colossal interest in the scientific fraternity due to their intriguing characteristic features. Various synthetic strategies with possible modification of functionality of POPs have been used to improve the catalytic efficiency towards value‐added chemicals production. Accordingly, this review article is mainly focused on the design, development of various functionalized POPs by employing Friedel‐Crafts alkylation, FeCl3 assisted oxidative polymerisation and polymerisation in nonaqueous medium, and a comprehensive understanding in potential catalytic applications namely, acetalization, hydrodeoxygenation (HDO), hydrogenation, coupling, photocatalytic hydrogen evolution and biomass conversion towards the production of value‐added chemicals in biodiesel and chemical industries.  相似文献   

19.
Xylitol is commonly known as one of the top platform intermediates for biomass conversion. Catalytic deoxygenation of xylitol provides an atomic and energetic efficient way to produce a variety of renewable chemicals including ethylene glycol, 1,2‐propanediol, lactic acid and 1,4‐anhydroxylitol. Despite a few initial attempts in converting xylitol into those products, improving catalyst selectivity towards C?O and C?C cleavage reactions remains a grand challenge in this area. To our best knowledge, there is lack of comprehensive review to summarize the most recent advances on catalyst design and mechanisms in deoxygenation of xylitol, offering important perspective into future development of xylitol transformation technologies. Therefore, in this mini‐review, we have critically discussed the conversion routes involved in xylitol deoxygenation over solid catalyst materials, the nanostructures of supported metal catalysts for C?H, C?C and C?O bond cleavage reactions, and mechanistic investigation for xylitol conversion. The outcome of this work provides new insights into rational design of effective deoxygenation catalyst materials for upgrading of xylitol and future process development in converting hemicellulosic biomass.  相似文献   

20.
在能源需求不断上涨及石油供应日益紧张的背景下,开展对煤、天然气或生物质等非油基资源(CO、CO_2、CH_3OH、CH_4等)的高效利用显得尤为重要。C_1小分子(CO、CO_2、CH_3OH、CH_4等)经催化转化可得到燃料及多种化学品,一直受到学术界及工业界的广泛关注。甲烷/甲醇作为重要的C_1平台分子,其催化转化在C_1化学中占据重要地位。为了提高目标产物的选择性,需要有效地控制甲烷/甲醇中C―H键的活化。传统热催化作为甲烷/甲醇最常见的转化方法发展已久,但仍然面临着反应条件苛刻、能耗大、产率和选择性低等问题。光催化反应通过引入光能弥补反应中吉布斯自由能的上升,同时具有反应条件温和、操作简单、能耗低等特点,从而为甲烷/甲醇转化提供了新的途径。通过调节光的波长、强度以及催化剂的氧化能力可以实现甲烷/甲醇的选择性转化,减少副产物的生成。此外,光催化能够选择性活化甲醇的C―H键而非O―H键,从而实现甲醇的C―C偶联反应。本文主要围绕甲烷/甲醇的重整、氧化和偶联反应,总结近年来的光催化转化进展,并对进一步提高光催化性能做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号