首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
两相催化——均相催化多相化新进展*   总被引:8,自引:1,他引:8  
评述了水溶性膦配体和两相催化研究领域的进展, 探讨了固载水相催化、温控相转移催化和氟两相体系等新型两相催化体系。两相催化在烯烃的氢甲酰化反应、不饱和化合物的加氢反应以及其它有机反应中获得了广泛的应用。  相似文献   

2.
This personal journey through the enlarging landscape of heterogeneous catalysis, pure and applied, starts with the discovery in 1823 of a dramatic example of the synthesis of water that was to serve as the basis of the first commercial exploitation of catalysis, Dobereiners lighter (tinder box). The quickening pace of successive industrial innovations and of academic insight during the intervening 170 years are summarized and the turning points, both major and minor, identified. Although new concepts and new ideas emerged in relative profusion, few exhibited the longevity predicted for them at birth by their proponents. Some concepts, like broken milestones on a vanished road, have ceased to retain their significance. Some have survived, even flourished. But in catalysis, as in most other branches of natural science, new tools and new techniques, rather than new concepts, tend to hold sway. And just as experimental advances in enzymology and immunology have led to the design of remarkable new biocatalysts so also, but not yet at the same level of delicate control, have the tools and techniques of solid-state chemistry (including novel preparative and computational procedures), generated many powerful rationally designed inorganic catalysts.  相似文献   

3.
多金属氧酸盐的氧化性及氧化催化作用研究新进展   总被引:3,自引:0,他引:3  
结合作者近期工作,从分子及原子水平上评述了同多与杂多金属氧酸盐的氧化性及其氧化还原催化作用研究的新进展.  相似文献   

4.
The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.  相似文献   

5.
Despite the great importance of heterogeneous catalysis, research in this field has long been characterized by its empiricism. Now, however, thanks to the rapid development of methods in surface physics, the elementary steps can be identified at the atomic level and the underlying principles understood. Defined single crystal surfaces are employed as models, based on the analysis of the surfaces of ‘real’ catalysts. Direct images, with atomic resolution, can be obtained using scanning tunneling microscopy, while electron spectroscopic methods yield detailed information on the bonding state of adsorbed species and the influence of catalyst additives (promotors) upon them. The successful application of this approach is illustrated with reference to the elucidation of the mechanism of ammonia synthesis. The catalyst surface is usually transformed under reaction conditions, and, as the processes involved are far-removed from equilibrium, such transformations can lead to intrinsic spatial and temporal self-organization phenomena. In this case, the reaction rate may not remain constant under otherwise invariant conditions but will change periodically or exhibit chaotic behavior, with the formation of spatial patterns on the catalyst surface.  相似文献   

6.
Dual-atom catalysts (DACs) have been a new frontier in heterogeneous catalysis due to their unique intrinsic properties. The synergy between dual atoms provides flexible active sites, promising to enhance performance and even catalyze more complex reactions. However, precisely regulating active site structure and uncovering dual-atom metal interaction remain grand challenges. In this review, we clarify the significance of the inter-metal interaction of DACs based on the understanding of active center structures. Three diatomic configurations are elaborated, including isolated dual single-atom, N/O-bridged dual-atom, and direct dual-metal bonding interaction. Subsequently, the up-to-date progress in heterogeneous oxidation reactions, hydrogenation/dehydrogenation reactions, electrocatalytic reactions, and photocatalytic reactions are summarized. The structure-activity relationship between DACs and catalytic performance is then discussed at an atomic level. Finally, the challenges and future directions to engineer the structure of DACs are discussed. This review will offer new prospects for the rational design of efficient DACs toward heterogeneous catalysis.  相似文献   

7.
8.
The efficiency and future development of the chemical industry are closely linked to catalysis. It has been estimated, for example, that 60 to 70% of all industrial chemicals have involved the use of a catalyst at some point during their manufacture. In the past two decades the share of the market credited to homogeneous transition metal catalysis increasead to 10–15%. Besides cobalt, which is used mainly in hydroformylation reactions, nickel is the most frequently used metal. Many carbon–carbon bond formation reactions can be carried out with high selectivity if catalyzed by organonickel complexes. Such reactions include, inter alia, carbonylation reactions, cyclic and linear oligomerization and polymerization reactions of monoenes and dienes, and hydrocyanation reactions. It was Reppe and Wilke who pioneered and shaped the field of homogeneous nickel catalysis. Great impetus was also given to the development of organonickel chemistry by Wilke and his students. Research in this area has contributed immensely towards an understanding of the reactions involved in catalysis.—This review is primarily concerned with nickel-catalyzed reactions which are of interest both preparatively and industrially; some mechanistic aspects are also dealt with.  相似文献   

9.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

10.
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.  相似文献   

11.
The electrochemical measurement of oxygen activity using ion-conducting solid electrolytes (λ-sensors) has become widely known, at least since the application of three-way catalysts in the postcombustion of exhaust gases from spark-ignition engines. However, the use of solid ion conductors is not limited to control devices. There are various other potential applications and numerous problems which can be studied: the formation of oxides in the course of catalytic reactions on metal surfaces, the improvement of selectivity and yield of catalytic reactions, such as the epoxidation of ethylene on silver catalysts and, finally, the cogeneration of electrical energy during oxidation reactions, such as the partial oxidation of methanol to formaldehyde.  相似文献   

12.
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.  相似文献   

13.
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.  相似文献   

14.
过渡金属催化不饱和有机化合物的加氢反应具有原子经济性高、绿色环保等优点,一直是有机化学研究的重点和难点.当前加氢反应中最常用的催化剂主要是铑、钌、铱、钯等贵金属,以储量丰富的金属锰作为催化剂更符合可持续发展的要求,在过去的几年中,锰催化的醛、酮、酯、腈、酰胺等不饱和化合物的氢化反应得以实现.我们系统地总结了锰配合物在加...  相似文献   

15.
Photoinduced metal–organic framework (MOF) enabled heterogeneous thiol catalysis has been achieved for the first time. MOF Zr-TPDCS-1 , consisting of Zr6-clusters and TPDCS linkers (TPDCS=3,3′′,5,5′′-tetramercapto[1,1′:4′,1′′-terphenyl]-4,4′′-dicarboxylate), effectively catalyzed the borylation, silylation, phosphorylation, and thiolation of organic molecules. Upon irradiation, the fast electron transfer from TPDCS to Zr6-cluster is believed to facilitate the formation of the thiyl radical, a hydrogen atom transfer catalyst, which competently abstracts the hydrogen from borane, silane, phosphine, or thiol for generating the corresponding element radical to engender the chemical transformations. The elaborate control experiments evidenced the generation of thiyl radicals in MOF and illustrated a radical reaction pathway. The gram-scale reaction worked well, and the product was conveniently separated via centrifugation and vacuum with a turnover number (TON) of ≈3880, highlighting the practical application potential of heterogeneous thiyl-radical catalysis.  相似文献   

16.
Over the past two decades, supramolecular gels have attracted significant attention from scientists in diverse research fields and have been extensively developed. This review mainly focuses on the significant achievements in supramolecular gels and catalysis. First, by incorporating diverse catalytic sites and active organic functional groups into gelator molecules, supramolecular gels have been considered as a novel matrix for catalysis. In addition, these rationally designed supramolecular gels also provide a variety of templates to access metal nanocomposites, which may function as catalysts and exhibit high activity in diverse catalytic transformations. Finally, as a new kind of biomaterial, supramolecular gels formed in situ by self‐assembly triggered by catalytic transformations are also covered herein.  相似文献   

17.
近年来,随着空气中二氧化碳含量的不断升高,二氧化碳的催化转化在科研界和工业界受到了广泛关注.非均相催化的二氧化碳加氢合成甲醇是实现二氧化碳资源化利用的重要手段之一,具有良好的应用前景.本文系统概述了非均相催化二氧化碳加氢合成甲醇反应的近期研究进展,重点介绍了金属催化剂和金属氧化物催化剂,对反应机理进行了阐述,并对该领域仍待解决的问题和发展前景进行了展望.  相似文献   

18.
Phase-transfer catalysis (PTC) has grown into a versatile preparative method in the last few years. The most notable new developments include the use of crown ethers as phase-transfer catalysts and the introduction of solid-liquid PTC. Some representative examples have been selected from the large number of new PTC reactions and some of them are summarized in tables.  相似文献   

19.
As a novel class of catalytic materials, hollow nanoreactors offer new opportunities for improving catalytic performance owing to their higher controllability on molecular kinetic behavior. Nevertheless, to achieve controllable catalysis with specific purposes, the catalytic mechanism occurring inside hollow nanoreactors remains to be further understood. In this context, this Review presents a focused discussion about the basic concept of hollow nanoreactors, the underlying theory for hollow nanoreactor-driven kinetics, and the intrinsic correlation between key structural parameters of hollow nanoreactors and molecular kinetic behaviors. We aim to provide in-depth insights into understanding kinetics occurred within typical hollow nanoreactors. The perspectives proposed in this paper may contribute to the development of the fundamental theoretical framework of hollow nanoreactor-driven catalysis.  相似文献   

20.
One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape-selectivity of product by the confined spatial environment. The success of shape-selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal-organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape-selectivity for the reactions. For this purpose, a series of binding site-accessible metal metalloporphyrin-frameworks (MMPFs) have been investigated to shed light on the nature of enzyme-mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号