首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study reports a reinvestigation of background electrolyte selection strategy for performance improvement in CE‐LIF of peptides and proteins. This strategy is based on the employment of high concentrations of organic species in BGE possessing high buffer capacity and low specific conductivity in order to ensure excellent stacking preconcentration and separation resolution of fluorescently tagged peptides and proteins. Unlike universal UV detection, the use of such BGEs at high concentrations does not lead to degradation of LIF detection signals at the working excitation and emission wavelengths. At the same buffer ionic strength, pH and electric field, an “inorganic‐species‐free” BGE (or ISF BGE) for CE‐LIF of fluorescently labeled beta amyloid peptide Aβ 1–42 (a model analyte) offered a signal intensity and peak efficiency at least three‐times higher than those obtained with a conventional BGE normally used for CE‐LIF, while producing an electric current twice lower. Good peak performance (in terms of height and shape) was maintained when using ISF BGEs even with samples prepared in high‐conductivity phosphate buffer saline matrix. The advantageous features of such BGEs used at high concentrations over conventional ones in terms of high separation resolution, improved signal intensities, tuning of EOF magnitudes and minimization of protein adsorption on an uncoated fused silica capillary are demonstrated using Alexa‐488‐labelled trypsin inhibitor. Such BGE selection approach was applied for investigation of separation performance for CE‐LIF of ovalbumin labelled with different fluorophores.  相似文献   

2.
《Electrophoresis》2017,38(3-4):507-512
LIF detection often requires labeling of analytes with fluorophores; and fast fluorescent derivatization is valuable for high‐throughput analysis with flow‐gated CE. Here, we report a fast fluorescein‐labeling scheme for amino acid neurotransmitters, which were then rapidly separated and detected in flow‐gated CE. This scheme was based on the reaction between primary amines and o‐phthalaldehyde in the presence of a fluorescent thiol, 2‐((5‐fluoresceinyl)aminocarbonyl)ethyl mercaptan (FACE‐SH). The short reaction time (<30 s) was suited for on‐line mixing and derivatization that was directly coupled with flow‐gated CE for rapid electrophoretic separation and sensitive LIF detection. To maintain the effective concentration of reactive FACE‐SH, Tris(2‐carboxyethyl)phosphine was added to the derivatization reagents to prevent thiol loss due to oxidation. This labeling scheme was applied to the detection of neurotransmitters by coupling in vitro microdialysis with online derivatization and flow‐gated CE. It is also anticipated that this fluorophore tagging scheme would be valuable for on‐chip labeling of proteins retained on support in SPE.  相似文献   

3.
The separation methods for proteins with high resolution and sensitivity are absolutely important in the field of biological sciences. Capillary sieving electrophoresis (CSE) is an excellent separation technique for DNA and proteins with high resolution, while LIF permits the most sensitive detection in CSE. Therefore, proteins have to be labeled with fluorescent or fluorogenic reagent to produce fluorescent derivatives. Both precolumn and oncolumn derivatization have been employed for the labeling of proteins in CSE. However, there is no report on the postcolumn derivatization due to the limitation in the use of a standard migration buffer, despite it being a promising method for sensitive detection of proteins. Here, we show a novel postcolumn derivatization method for protein separation by CSE, using a tertiary amine as a buffer component in the running buffer. Tris, which is commonly used as a base in CSE separation buffers, was substituted by tertiary amines, 2‐(diethylamino)ethanol and triethanolamine. A buffer solution containing 2‐(diethylamino)ethanol or triethanolamine can be used for the CSE separation followed by the postcolumn derivatization of proteins, since both reagents are unreactive toward a fluorogenic labeling reagent, naphthalene‐2,3‐dicarbaldehyde. Thus, LIF detection using the postcolumn derivatization permits significant reduction in the LOD (by a factor of 2.4–28) of proteins, compared with conventional absorbance detection.  相似文献   

4.
The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser‐induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE‐LIF‐REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE‐LIF. The results demonstrate that the CE‐LIF‐REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, in‐column fiber‐optic (ICFO) laser‐induced fluorescence (LIF) detection technique is coupled with capillary electrophoresis (CE) for the rapid separation of neodymium for the first time. The effects of buffer concentration, buffer pH, and separation voltage on the CE behaviors, including electrophoretic efficiency and detection sensitivity, are investigated in detail. Under the optimal condition determined in this study (15 mM borate buffer, pH 10.50, separation voltage 24 kV), neodymium could be separated effectively from the neighboring lanthanides (praseodymium and samarium) within several minutes, and the limit of detection for neodymium is estimated to be at the ppt level. The ICFO‐LIF‐CE system assembled in this study exhibits unique performance characteristics such as low cost and flexibility. Meanwhile, the separation efficiency and detection sensitivity of the assembled CE system are comparable to or somewhat better than those obtained in the previous traditional CE systems, indicating the potential of the assembled CE system for practical applications in the fields of spent nuclear fuel analysis, nuclear waste disposal/treatment, and nuclear forensics.  相似文献   

6.
1-Anilinonaphthalene-8-sulfonic acid (1,8-ANS), 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and 2-(p-toluidino)naphthalene-6-sulfonic acid (2,6-TNS) were evaluated as additives in different buffers for the detection of bovine whey proteins using laser-induced fluorescence (LIF) monitoring in capillary electrophoresis (CE). These N-arylaminonaphthalene sulfonates furnish a large fluorescence emission when associated to some proteins whereas their emission in aqueous buffers, such as those used in CE separations, is very small. To select the best detection conditions, the fluorescence of these probes was first compared using experiments carried out in a fluorescence spectrophotometer. Using bovine serum albumin (BSA) as a model protein, it was demonstrated that 2-(N-cyclohexylamino)ethanesulfonic acid (CHES) buffer (pH 8 and pH 10.2) and the fluorescent probe 2,6-TNS gave rise to the highest increase in fluorescence for BSA. When the composition of these separation buffers was optimized for the electrophoretic separations, CHES buffer, pH 10.2 was chosen as the most suitable buffer to detect bovine whey proteins. The limit of detection obtained for some whey proteins in CE separations was about 6.10(-8) M for BSA, 3.10(-7) M for beta-lactoglobulin A (beta-LGA), 3.10(-7) M for beta-lactoglobulin B (beta-LGB), and 3.10(-6) M for alpha-lactalbumin (alpha-LA). These detection limits were compared to those achieved using UV detection under the same separation conditions. The results showed that the detection limits of BSA, beta-LGA and beta-LGB were twice as good using LIF than with UV detection. However, the limit of detection for alpha-LA was better when UV was used. The applicability of LIF detection to CE separation of whey proteins in bovine milk samples was also demonstrated.  相似文献   

7.
Yang X  Yuan H  Wang C  Zhao S  Xiao D  Choi MM 《Electrophoresis》2007,28(17):3105-3114
A highly sensitive in-column fiber-optic LIF detector for CE has been constructed and evaluated. In this detection system, a 457-nm diode-pumped solid-state blue laser was used as the excitation light source and an optical fiber (40 mum od) was used to transmit the excitation light. One end of the optical fiber was inserted into the separation capillary and was in situ positioned at the detection window. The other end of the fiber was protruded from the capillary to capture the excitation light beam from the blue laser. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a yellow color filter before reaching the photomultiplier tube. The present CE-fluorescence detection is a simple and compact optical system. It reduces the laser scattering effect from the capillary and fiber as compared to the conventional LIF detection for CE. Its utility was successfully demonstrated by the separation and determination of D-penicillamine labeled with naphthalene-2,3-dicarboxaldehyde. The detection limit was 0.8 nM (S/N = 3). The present detection scheme has been proven to be attractive for sensitive fluorescence detection for CE.  相似文献   

8.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

9.
CE- and microchip-based separations coupled with LIF are powerful tools for the separation, detection and determination of biomolecules. CE with certain configurations has the potential to detect a small number of molecules or even a single molecule, thanks to the high spatial coherence of the laser source which permits the excitation of very small sample volumes with high efficiency. This review article discusses the use of LIF detection for the analysis of peptides and proteins in CE. The most common laser sources, basic instrumentation, derivatization modes and set-ups are briefly presented and special attention is paid to the different fluorogenic agents used for pre-, on- and postcapillary derivatization of the functional groups of these compounds. A table summarizing major applications of these derivatization reactions to the analysis of peptides and proteins in CE-LIF and a bibliography with 184 references are provided which covers papers published to the end of 2005.  相似文献   

10.
Enzymatic farnesylation of oncogenic forms of Ras proteins is the initial step in a series of posttranslational modifications essential for Ras activity. The modification is catalyzed by the enzyme, protein farnesyltransferase (PFTase), which transfers a farnesyl moiety from farnesyl diphosphate to the protein. We employed capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection to develop a rapid and sensitive method for the determination of PFTase activity in vitro. The limited substrate specificity of PFTase allowed us to use a fluorescently labeled pentapeptide instead of a Ras protein as a substrate for the enzyme; the product of the enzymatic reaction was the farnesylated pentapeptide. The product was separated from the substrate by CE and quantified with LIF detection. Under optimal conditions, the separation was achieved within 10 min with a resolution of 86. The mass and concentration limits of detection for the farnesylated product were 10(-19) mol and 0.28 nM, respectively. By measuring the rate of accumulation of the farnesylated product, we were able to determine the kinetic parameters of the enzymatic reaction. For yeast PFTase as an enzyme and difluorocarboxyfluorescein-labeled GCVIA peptide as a substrate, the values of k(cat) and K(M) were found to be (3.1 +/- 0.3)x10(-3) s(-1) and (12.0 +/- 1.2) nuM, respectively. Our results suggest that CE-LIF can be efficiently used for the determination of enzymatic activity of PFTase in vitro. After minor modifications, the developed method can be also applied to other reactions of enzymatic prenylation of proteins.  相似文献   

11.
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2‐aminoacridone and subjected to reversed polarity CE‐LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE‐LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE‐LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.  相似文献   

12.
Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy.  相似文献   

13.
In this study, a rapid and sensitive method is described for the catecholamines detection in rat brain. CE with LIF detection for the determination of FITC derivatized catecholamines (dopamine, epinephrine, and norepinephrine) was demonstrated. Conventional water bath and microwave‐assisted derivatization methods were employed and a significant reduction in the derivatization time from 2 h for the conventional water bath at room temperature (ca. 25°C) to 2 min for the microwave‐assisted derivatization was achieved. Online sample concentration of field‐amplified sample stacking (FASS) method was employed to achieve higher sensitivities (the detection limits obtained in the normal injection mode ranged from 2.6 to 4.5 ng L?1 and in the FASS mode ranged from 22 to 34 pg L?1). Furthermore, this microwave‐assisted derivatization CE–LIF method successfully determined catecholamines in rat brain with as low as 100 ng L?1 (FASS mode) to 10 μg L?1 (normal injection mode). This CE–LIF method provided better detection ability when compared to the best reports on catecholamines analyses.  相似文献   

14.
The measurement of γ‐aminobutyric acid (GABA) is suitable for investigating various neurological disorders. In this study, a sensitive and selective method for free GABA quantification in cerebrospinal fluid (CSF) has been standardised. This method is based on CE with LIF detection using 4‐fluoro‐7‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD‐F) as a derivatisating agent. The reaction conditions (NBD‐F concentration, pH, temperature and reaction time) and the electrophoretic parameters (run buffer composition and pH and separation voltage) were optimised to obtain the maximum derivatisation efficiency and electrophoretic resolution. The best resolution was obtained using 200 mM sodium borate, 10 mM SDS, 8.5 mM β‐CD, pH 10 and 20 kV voltage. The method was linear in the concentration range of 2.5–1000 nM with good inter‐ and intra‐assay precision values. The effects of CSF handling on free GABA concentrations were also evaluated. Our results show that the time delay between CSF collection and freezing strongly increases the CSF GABA values. Age‐related reference values were established in 55 paediatric controls. The influence of antiepileptic therapy on free CSF GABA was studied in 38 neuropaediatric patients. Significantly, higher GABA values were obtained in patients taking valproic acid or vigabatrin therapy, which are antiepileptic drugs that modulate GABA metabolism.  相似文献   

15.
Naphthalene-2,3-dicarboxyaldehyde (NDA) is commonly used for detection of primary amines in conjunction with their separation with HPLC and CE. The fluorescence of the derivatives can be measured by a conventional fluorometer or via LIF. NDA is a reactive dye, which can replace o-phthaldehyde (OPA) and provides for derivatives which are considerably more stable than OPA derivatives. In addition, NDA can be used to derivatize primary amines at concentrations as low as 100 pM. In this work, HPLC/fluorescence and MEKC/LIF experiments were performed to separate/detect six neuroactive compounds, the amino acids, Gly, Glu, Asp, gamma-aminobutyric acid (GABA) and the catecholamines, dopamine and noradrenaline. The two methods were compared in terms of performance of separation. The amino acids can be separated in HPLC in less than 30 min and an identical separation is obtained in CE using MEKC and lithium salts with greater resolution (the number of theoretical plates was approximately 5000 for HPLC and 200 000 for MEKC). The lowest detected concentration was in the range of 0.1 nM for CE/LIF. The presence of a high salt concentration does not affect the separation of the samples. Examples of the analysis of microdialysate samples as well as amino acids in Ringer's solution are presented.  相似文献   

16.
Methylating substances alter DNA by forming N3‐methylthymidine (N3mT), a mutagenic base modification. To develop a sensitive analytical method for the detection of N3mT in DNA based on capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF), we synthesized the N3mT‐3’‐phosphate as a chemical standard. The limit of detection was 1.9 amol of N3mT, which corresponds to one molecule of N3mT per 1000 normal nucleotides or 0.1%. With this method, we demonstrated that the carcinogenic nitrosamine N’‐nitrosonornicotine (NNN) induced N3mT in the human lung cancer cell line A549. Treatment with NNN also caused an elevated degree of 5‐hydroxymethylcytidine (5hmdC) in DNA, while the methylation degree (i.e. 5‐methylcytidine; 5mdC) stayed constant. According to our data, NNN could, via yet unknown mechanisms, play a role in the formation of N3mT as well as 5hmdC. In this study we have developed a new sensitive analytical method using CE‐LIF for the simultaneous detection of the three DNA modifications, 5mdC, 5hmdC and N3mT.  相似文献   

17.
Laser-induced fluorescence (LIF) detection is now a well-known sensitive and selective detection mode for capillary electrophoresis (CE) analysis. It has been shown to be 100- to 100,000-times more sensitive than UV detection and little work has been done using LIF in conjunction with high-performance liquid chromatography (HPLC). The need for greater resolution and higher sensitivity for the analysis of anthracyclines (fluorescent chemotherapic drugs), prompted us to compare CE-LIF and HPLC-LIF, for the detection of these substances. CE-LIF sensitivity based on quantity of anthracycline injected is 50-times greater than that obtained with HPLC-LIF, because of the injected sample volume. Analysis of daunorubicin in Kaposy sarcoma tumors and in plasma are presented. The decrease of the concentration of daunorubicin in the tumor and in the plasma following time show the same behavior, indicating identical concentrations of the anthracycline in both samples.  相似文献   

18.
We are presenting the application of CE technique with dual‐channel LIF detection for the simultaneous separation of DNA fragments labeled with two different fluorescence dyes. The optimal conditions of the analysis were determined for the separation of amplified fragment length polymorphism (AFLP) fragments labeled with 5′‐6‐carboxyfluorescein (6‐FAM) and the DNA size standard labeled with sulfoindocyanine succinimidyl ester (Cy‐5). CE equipped with both argon ion and diode lasers is a good alternative for sequencers and might be applied in analyses of PCR products generated by various fingerprinting methods.  相似文献   

19.
Issue no. 2 is a regular issue assembled of 16 solid and original research articles distributed over 3 distinct parts. Part I is on novel trends in fundamentals and methodologies including theoretical models for selectivity of charged solutes in MEKC, system peaks in indirect detection, measuring epimerization constants by MEEKC, bundled CE using micro‐structured fibers, 2‐D separations by coupling CIEF and CEC, high speed DNA CE, MCE of N‐glycans and mucin expression in a microfluidic gradient device. Part II is concerned with detection, sensitivity enhancement, on‐column preconcentration and microdialysis sampling involving the design of continuous full filling CEC‐ESI‐MS using nanoparticles, CE‐fluorescence using tapered optical fiber, CZE separation of pesticide residues in water samples with acid‐assisted on‐column preconcentration and CE‐LIF to detect neurotransmitter amino acids and carbamathione in brain microdialysis samples. Novel methods for the separation and profiling of various proteins and large nucleic fragments are described in 4 consecutive papers grouped in part III. Featured articles include: Theoretical models of separation selectivity for charged compounds in micellar electrokinetic chromatography (( 10.1002/elps.201000405 )) Bundled capillary electrophoresis using microstructured fibres ( 10.1002/elps.201000442 )) Two‐dimensional separation system by on‐line hyphenation of capillary isoelectric focusing with pressurized capillary electrochromatography for peptide and protein mapping ( 10.1002/elps.201000419 )) Microchip electrophoresis of N‐glycans on serpentine separation channels with asymmetrically tapered turns ( 10.1002/elps.201000461 ))  相似文献   

20.
This article presents a continuous capillary electrophoresis with laser‐induced fluorescence (CE‐LIF) following spectral studies of the noncovalent interactions between novel Squarylium Boronic Acid 4 (SQ‐BA4) & Squarylium Diboronic Acid 2 (SQ‐DBA2) squarylium dyes and human serum albumin (HSA). Two protocols were used wherein the on‐column‐labeling protocol was found to be more sensitive than the precolumn one by showing a better enhancement in the peak area of the HSA–dye complex besides lower limits of detection (LODs) for HSA. Also, stability studies were conducted with or without HSA using precolumn‐labeling mode over one week exhibiting the superiority of SQ‐BA4 to SQ‐DBA2. Then, a mixture containing three model proteins, HSA, β‐lactoglobulin B, and transferrin, was labeled on‐column with both dyes and completely resolved by CE‐LIF after optimization of several parameters. Both dyes provided lower LODs for HSA than those of β‐lactoglobulin B and transferrin with higher sensitivities. In addition, the SQ‐BA4 dye showed again greater sensitivities with all the three proteins than SQ‐DBA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号